1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped and yellow-pigmented bacterial strain, designated TX0405, was isolated from an automotive air conditioning system. Colonies were circular, convex, semi-translucent, smooth and yellow. The strain grew at 20–28°C (optimum, 28°C), at pH 6.0–7.5 (optimum, pH 6.5) and in the presence of 0–1 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence indicated that the strain was grouped with the members of the genus Spirosoma , with the sequence similarities of 93.0 and 92.3 % with Spirosoma panaciterrae DSM 21099 and Spirosoma swuense JBM2-3, respectively. The major fatty acids of the strain were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) (33.2 %), C16 : 1ω5c (25.4 %), iso-C15 : 0 (15.0 %), C16 : 0 (6.5 %) and iso-C17 : 0 3-OH (6.2 %). The predominant menaquinone was MK-7. The polar lipids were phosphatidylethanolamine, an unidentified aminolipid, two unidentified aminophospholipids and three unidentified lipids. The DNA G+C content of the type strain was 51.9 mol%. On the basis of the data presented, strain TX0405 represents a novel species of the genus Spirosoma , for which the name Spirosoma metallilatum sp. nov. (=KACC 19012=NBRC 112493) is proposed.

Keyword(s): evaporator , novel species and Spirosoma
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002533
2017-12-18
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/523.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002533&mimeType=html&fmt=ahah

References

  1. Larkin JM, Borrall R. Spirosomaceae, a new family to contain the genera Spirosoma Migula 1894, Flectobacillus Larkin et al. 1977, and Runella Larkin and Williams 1978. Int J Syst Bacteriol 1978; 28: 595– 596 [CrossRef]
    [Google Scholar]
  2. Kim DU, Lee H, Lee S, Park S, Yoon JH et al. Spirosoma carri sp. nov., isolated from an automobile air conditioning system. Int J Syst Evol Microbiol 2017; 67: 4195– 4199 [CrossRef] [PubMed]
    [Google Scholar]
  3. Lee JJ, Lee YH, Park SJ, Lee SY, Kim BO et al. Spirosoma knui sp. nov., a radiation-resistant bacterium isolated from the Han River. Int J Syst Evol Microbiol 2017; 67: 1359– 1365 [CrossRef] [PubMed]
    [Google Scholar]
  4. Li Y, Ai MJ, Sun Y, Zhang YQ, Zhang JQ. Spirosoma lacussanchae sp. nov., a phosphate-solubilizing bacterium isolated from a freshwater reservoir. Int J Syst Evol Microbiol 2017; 67: 3144– 3149 [CrossRef] [PubMed]
    [Google Scholar]
  5. Lee JJ, Park SJ, Lee YH, Lee SY, Park S et al. Spirosoma luteolum sp. nov. isolated from water. J Microbiol 2017; 55: 247– 252 [CrossRef] [PubMed]
    [Google Scholar]
  6. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 67: 529– 531 [CrossRef] [PubMed]
    [Google Scholar]
  7. Joo ES, Kim EB, Jeon SH, Srinivasan S, Kim MK. Spirosoma swuense sp. nov., isolated from wet soil. Int J Syst Evol Microbiol 2017; 67: 532– 536 [CrossRef] [PubMed]
    [Google Scholar]
  8. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003; 55: 541– 555 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York, USA: John Wiley and Sons; 1991; pp. 115– 175
    [Google Scholar]
  10. Lee S, Malone C, Kemp PF. Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Mar Ecol Prog Ser 1993; 101: 193– 201 [CrossRef]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  12. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823– 1829 [CrossRef] [PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  19. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society For Microbiology; 2007; pp. 309– 329
    [Google Scholar]
  20. Denner EB, Paukner S, Kämpfer P, Moore ER, Abraham WR et al. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 2001; 51: 827– 841 [CrossRef] [PubMed]
    [Google Scholar]
  21. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murra RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  23. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [PubMed] [Crossref]
    [Google Scholar]
  24. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  27. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical methods in prokaryotic systematics Chichester: Wiley; 1994; pp. 121– 161
    [Google Scholar]
  28. Ten LN, Xu JL, Jin FX, Im WT, Oh HM et al. Spirosoma panaciterrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59: 331– 335 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002533
Loading
/content/journal/ijsem/10.1099/ijsem.0.002533
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error