1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped, bacterium, C62-2, was isolated from activated sludge in Fujian Province, China. Phylogenetic analysis of the 16S rRNA gene sequences showed that it was closely related to WB 2.1-25 (97.92 %), THG-G118 (97.40 %), A37 (97.37 %) and LMG 22862 (97.3 %). Cells grew aerobically at 20–37 °C (optimum, 30 °C), pH 5.0–8.0 (optimum, pH 7.0) and in the presence of 0–3.0 % (w/v) NaCl. Strain C62-2 contained MK-7 as the major menaquinone and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were iso-C, summed feature 3 (C 6, C 7) and iso-C 3-OH. The DNA G+C content was 43.2 mol% () and DNA–DNA reassociation values were 35.4 % between strain C62-2 and WB 2.1-25. On the basis of phenotypic, chemotaxonomic and phylogenetic comparisons with the closely related species and DNA–DNA relatedness values, it was concluded that strain C62-2 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is C62-2 (=CGMCC 1.15343=NBRC 111767).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002531
2018-01-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/438.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002531&mimeType=html&fmt=ahah

References

  1. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998;48:165–177 [CrossRef][PubMed]
    [Google Scholar]
  2. Yoon JH, Lee MH, Kang SJ, Park SY, Oh TK. Pedobacter sandarakinus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006;56:1273–1277 [CrossRef][PubMed]
    [Google Scholar]
  3. Luo X, Wang Z, Dai J, Zhang L, Li J et al. Pedobacter glucosidilyticus sp. nov., isolated from dry riverbed soil. Int J Syst Evol Microbiol 2010;60:229–233 [CrossRef][PubMed]
    [Google Scholar]
  4. Gordon NS, Valenzuela A, Adams SM, Ramsey PW, Pollock JL et al. Pedobacter nyackensis sp. nov., Pedobacter alluvionis sp. nov. and Pedobacter borealis sp. nov., isolated from Montana flood-plain sediment and forest soil. Int J Syst Evol Microbiol 2009;59:1720–1726 [CrossRef][PubMed]
    [Google Scholar]
  5. Manandhar P, Zhang G, Lama A, Hu Y, Gao F. Pedobacter psychrotolerans sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016;66:4560–4566 [CrossRef][PubMed]
    [Google Scholar]
  6. Derichs J, Kämpfer P, Lipski A. Pedobacter nutrimenti sp. nov., isolated from chilled food. Int J Syst Evol Microbiol 2014;64:1310–1316 [CrossRef][PubMed]
    [Google Scholar]
  7. Park S, Jung YT, Park JM, Won SM, Yoon JH. Pedobacter silvilitoris sp. nov., isolated from wood falls. Int J Syst Evol Microbiol 2015;65:1284–1289 [CrossRef][PubMed]
    [Google Scholar]
  8. Baik KS, Park YD, Kim MS, Park SC, Moon EY et al. Pedobacter koreensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2007;57:2079–2083 [CrossRef][PubMed]
    [Google Scholar]
  9. Kang H, Kim H, Joung Y, Joh K. Pedobacter rivuli sp. nov., isolated from a freshwater stream. Int J Syst Evol Microbiol 2014;64:4073–4078 [CrossRef][PubMed]
    [Google Scholar]
  10. Muurholm S, Cousin S, Päuker O, Brambilla E, Stackebrandt E. Pedobacter duraquae sp. nov., Pedobacter westerhofensis sp. nov., Pedobacter metabolipauper sp. nov., Pedobacter hartonius sp. nov. and Pedobacter steynii sp. nov., isolated from a hard-water rivulet. Int J Syst Evol Microbiol 2007;57:2221–2227 [CrossRef][PubMed]
    [Google Scholar]
  11. Margesin R, Spröer C, Schumann P, Schinner F. Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 2003;53:1291–1296 [CrossRef][PubMed]
    [Google Scholar]
  12. Covas C, Caetano T, Cruz A, Santos T, Dias L et al. Pedobacter lusitanus sp. nov., isolated from sludge of a deactivated uranium mine. Int J Syst Evol Microbiol 2017;67:1339–1348 [CrossRef][PubMed]
    [Google Scholar]
  13. Wang Z, Tan Y, Xu D, Wang G, Yuan J et al. Pedobacter vanadiisoli sp. nov., isolated from soil of a vanadium mine. Int J Syst Evol Microbiol 2016;66:5112–5117 [CrossRef][PubMed]
    [Google Scholar]
  14. Qiu X, Qu Z, Jiang F, Ren L, Chang X et al. Pedobacter huanghensis sp. nov. and Pedobacter glacialis sp. nov., isolated from Arctic glacier foreland. Int J Syst Evol Microbiol 2014;64:2431–2436 [CrossRef][PubMed]
    [Google Scholar]
  15. Trinh H, Yi TH. Pedobacter humi sp. nov., isolated from a playground soil. Int J Syst Evol Microbiol 2016;66:2382–2388 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 1998;48:187–194 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  21. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  22. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933;77:194 [CrossRef][PubMed]
    [Google Scholar]
  23. Fautz E, Reichenbach H. Biosynthesis of flexirubin: incorporation of precursors by the bacterium Flexibacter elegans. Phytochemistry 1979;18:957–959 [CrossRef]
    [Google Scholar]
  24. Jiang CY, Liu Y, Liu YY, You XY, Guo X et al. Alicyclobacillus ferrooxydans sp. nov., a ferrous-oxidizing bacterium from solfataric soil. Int J Syst Evol Microbiol 2008;58:2898–2903 [CrossRef][PubMed]
    [Google Scholar]
  25. Zhang B, Liu ZQ, Zheng YG. Flavobacterium quisquiliarum sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2017;67:3965–3970 [CrossRef][PubMed]
    [Google Scholar]
  26. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  27. Gunstone FD, Jacobsberg FR. Fatty acids, Part 35 the preparation and properties of the complete series of methyl epoxyoctadecanoates. Chem Phys Lipids 1972;9:26–34 [CrossRef]
    [Google Scholar]
  28. Bischel MD, Austin JH. A modified benzidine method for the chromatographic detection of sphingolipids and acid polysaccharides. Biochim Biophys Acta 1963;70:598–600 [CrossRef][PubMed]
    [Google Scholar]
  29. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  30. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  31. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  32. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002531
Loading
/content/journal/ijsem/10.1099/ijsem.0.002531
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error