1887

Abstract

Strain Eup a-2, isolated from the torch coral Euphyllia glabrescens, was characterized using a polyphasic taxonomy approach. Cells of strain Eup a-2 were Gram-negative, aerobic and motile by three polar flagella and formed translucent colonies. Optimal growth occurred at 25 °C, pH 6–8 and in the presence of 2–4 % NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Eup a-2 belonged to the genus Litoribrevibacter and showed the highest levels of sequence similarity with respect to Litoribrevibacter albus Y32 (97.8 %). Strain Eup a-2 contained summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0 as the predominant fatty acids. The predominant isoprenoid quinone was Q-8. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphophatidylglycerol. Genomic DNA G+C content of strain Eup a-2 was 49.1 mol%. The DNA–DNA hybridization value for strain Eup a-2 with L. albus Y32 was less than 30 %. Differential phenotypic properties, together with the phylogenetic inference, demonstrate that strain Eup a-2 should be classified as a novel species of the genus Litoribrevibacter , for which the name Litoribrevibacter euphylliae sp. nov. is presented. The type strain is Eup a-2 (=BCRC 81004=LMG 29725=KCTC 52438).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002529
2017-12-13
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/432.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002529&mimeType=html&fmt=ahah

References

  1. Li Y, Zhu H, Lai Q, Lei X, Zhang H et al. Litoribrevibacter albus gen. nov. sp. nov., isolated from coastal seawater, Fujian Province, China. Antonie van Leeuwenhoek 2014; 106: 911– 918 [CrossRef] [PubMed]
    [Google Scholar]
  2. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  3. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47: 249– 251 [CrossRef] [PubMed]
    [Google Scholar]
  4. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51: 1729– 1735 [CrossRef] [PubMed]
    [Google Scholar]
  5. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  6. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37: D141– D145 [CrossRef] [PubMed]
    [Google Scholar]
  7. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  8. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  9. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  10. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983; [Crossref]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  13. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  14. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10: 1073– 1095 [PubMed]
    [Google Scholar]
  15. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5c Distributed by the author Department of Genome Sciences, University of Washington, Seattle, USA: 1993
    [Google Scholar]
  16. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61: 3756– 3758 [PubMed]
    [Google Scholar]
  17. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 1970; 71: 283– 294 [CrossRef] [PubMed]
    [Google Scholar]
  18. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999; 171: 73– 80 [CrossRef] [PubMed]
    [Google Scholar]
  19. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparativesystematic. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 330– 393
    [Google Scholar]
  20. Hosoya S, Adachi K, Kasai H. Thalassomonas actiniarum sp. nov. and Thalassomonas haliotis sp. nov., isolated from marine animals. Int J Syst Evol Microbiol 2009; 59: 686– 690 [CrossRef] [PubMed]
    [Google Scholar]
  21. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35: 213– 219 [CrossRef] [PubMed]
    [Google Scholar]
  22. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef] [PubMed]
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  24. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 121– 161
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  26. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  27. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 265– 309
    [Google Scholar]
  28. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002529
Loading
/content/journal/ijsem/10.1099/ijsem.0.002529
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error