1887

Abstract

A novel extremely halophilic archaeon, designated SAH-A6, was isolated from a sample of commercial rock salt in Ethiopia. Cells of SAH-A6 were aerobic and pleomorphic. The strain was able to grow at concentrations of 15–30 % (w/v) NaCl (optimum 20–25 % NaCl), at pH 6.0–9.0 (optimum pH 7.0) and in a temperature range of 30–55 °C (optimum 37–45 °C). Mg was not required for growth of SAH-A6 cells. On the basis of 16S rRNA gene sequence analysis, strain SAH-A6 was closely related to Cb34 (99.1 %), YC87 (98.9 %), EN-2 (98.7 %), JCM 15757 (98.4 %), CGSA15 (97.3 %), 9-3 (97.1 %), 8W8 (97.1 %), JCM 1478 (97.1 %), B8 (97.0 %) and C49 (97.0 %). Phylogenetic analysis based on the gene sequences showed that strain SAH-A6 was closely related to Cb34 (99.7 %), JCM 14031 (99.3 %) and other members of the genus (<99.0 %). The DNA G+C content of the strain was 68.0 mol%. DNA–DNA hybridization between strain SAH-A6 and the most closely related members of the genus were below 55 %, suggesting that the new isolate constitutes a different genospecies. On the bases of chemotaxonomic, phenotypic and genotypic data, strain SAH-A6 (=KCCM 43215=JCM 31519) represents a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002525
2018-01-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/416.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002525&mimeType=html&fmt=ahah

References

  1. McGenity TJ, Grant WD. Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the Genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 1995;18:237–243 [CrossRef]
    [Google Scholar]
  2. Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie van Leeuwenhoek 2016;109:565–587 [CrossRef][PubMed]
    [Google Scholar]
  3. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  4. Fullmer MS, Soucy SM, Swithers KS, Makkay AM, Wheeler R et al. Population and genomic analysis of the genus Halorubrum. Front Microbiol 2014;5:140 [CrossRef][PubMed]
    [Google Scholar]
  5. McGenity TJ, Grant WD. Halorubrum. In Whitman WB. (editor) Bergey's Manual of Systematics of Archaea and Bacteria USA: John Wiley & Sons, Inc, Association with Bergey’s Manual Trust; 2015; pp.1–11
    [Google Scholar]
  6. Lizama C, Monteoliva-Sánchez M, Suárez-García A, Roselló-Mora R, Aguilera M et al. Halorubrum tebenquichense sp. nov., a novel halophilic archaeon isolated from the Atacama Saltern, Chile. Int J Syst Evol Microbiol 2002;52:149–155 [CrossRef][PubMed]
    [Google Scholar]
  7. Moran-Reyna A, Coker JA. The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea. F1000Res 2014;3:168 [CrossRef][PubMed]
    [Google Scholar]
  8. Cui HL, Tohty D, Zhou PJ, Liu SJ. Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. Int J Syst Evol Microbiol 2006;56:1631–1634 [CrossRef][PubMed]
    [Google Scholar]
  9. Roh SW, Bae JW. Halorubrum cibi sp. nov., an extremely halophilic archaeon from salt-fermented seafood. J Microbiol 2009;47:162–166 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang WJ, Cui HL. Halorubrum salinum sp. nov., isolated from a marine solar saltern. Arch Microbiol 2014;196:395–400 [CrossRef][PubMed]
    [Google Scholar]
  11. Feng J, Zhou P, Zhou YG, Liu SJ, Warren-Rhodes K. Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol 2005;55:149–152 [CrossRef][PubMed]
    [Google Scholar]
  12. Kondo Y, Minegishi H, Echigo A, Shimane Y, Kamekura M et al. Halorubrum gandharaense sp. nov., an alkaliphilic haloarchaeon from commercial rock salt. Int J Syst Evol Microbiol 2015;65:2345–2350 [CrossRef][PubMed]
    [Google Scholar]
  13. Hu L, Pan H, Xue Y, Ventosa A, Cowan DA et al. Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. Int J Syst Evol Microbiol 2008;58:1705–1708 [CrossRef][PubMed]
    [Google Scholar]
  14. Fan H, Xue Y, Ma Y, Ventosa A, Grant WD. Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int J Syst Evol Microbiol 2004;54:1213–1216 [CrossRef][PubMed]
    [Google Scholar]
  15. Kamekura M, Dyall-Smith ML, Upasani V, Ventosa A, Kates M. Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 1997;47:853–857 [CrossRef][PubMed]
    [Google Scholar]
  16. Dyall-Smith M. The Halohandbook. Protocols for haloarchaeal genetics. version 7.2 2009;http://www.haloarchaea.com/resources/halohandbook
  17. Koh HW, Song HS, Song U, Yim KJ, Roh SW et al. Halolamina sediminis sp. nov., an extremely halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 2015;65:2479–2484 [CrossRef][PubMed]
    [Google Scholar]
  18. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955;70:484–485[PubMed]
    [Google Scholar]
  19. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 1997;47:233–238 [CrossRef]
    [Google Scholar]
  20. Savage KN, Krumholz LR, Oren A, Elshahed MS. Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 2007;57:19–24 [CrossRef][PubMed]
    [Google Scholar]
  21. Buxton R. Nitrate and nitrite reduction test protocols. American Society for Microbiology 2011
    [Google Scholar]
  22. Benson HJ. Microbiological Applications: A Laboratory Manual in General Microbiology Boston: McGraw-Hill Higher Education; 2002; pp.1–478
    [Google Scholar]
  23. Gutiérrez C, González C. Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 1972;24:516–517[PubMed]
    [Google Scholar]
  24. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  25. Winn WC AS, Janda WM, Koneman EW, Procop GW, Schreckenberger PC et al. The Enterobacteriaceae. In Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, 6th ed. New York: Lippincott williams & wilkins; 2006; pp.226–227
    [Google Scholar]
  26. Cui HL, Zhou PJ, Oren A, Liu SJ. Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 2009;13:31–37 [CrossRef][PubMed]
    [Google Scholar]
  27. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol 2010;60:2398–2408 [CrossRef][PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  29. Hall TA. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  30. Nei M, Kumar S, Takahashi K. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc Natl Acad Sci USA 1998;95:12390–12397 [CrossRef][PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  34. Gibtan A, Woo M, Oh D, Park K, Lee HS et al. Draft genome sequence of the extremely halophilic Halorubrum sp. SAH-A6 isolated from rock salts of the Danakil depression, Ethiopia. Genom Data 2016;10:30–32 [CrossRef][PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  36. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  38. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  39. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  40. Chen S, Liu HC, Zhou J, Xiang H. Halorubrum pallidum sp. nov., an extremely halophilic archaeon isolated from a subterranean rock salt. Int J Syst Evol Microbiol 2016;66:2980–2986 [CrossRef][PubMed]
    [Google Scholar]
  41. Corral P, de La Haba RR, Sánchez-Porro C, Ali Amoozegar M, Thane Papke R et al. Halorubrum halodurans sp. nov., an extremely halophilic archaeon isolated from a hypersaline lake. Int J Syst Evol Microbiol 2016;66:435–444 [CrossRef][PubMed]
    [Google Scholar]
  42. Qiu XX, Zhao ML, Han D, Zhang WJ, Cui HL. Halorubrum rubrum sp. nov., an extremely halophilic archaeon from a Chinese salt lake. Antonie van Leeuwenhoek 2013;104:885–891 [CrossRef][PubMed]
    [Google Scholar]
  43. Gutiérrez MC, Castillo AM, Corral P, Kamekura M, Ventosa A. Halorubrum aquaticum sp. nov., an archaeon isolated from hypersaline lakes. Int J Syst Evol Microbiol 2011;61:1144–1148 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002525
Loading
/content/journal/ijsem/10.1099/ijsem.0.002525
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error