1887

Abstract

Roseoflavin is the only known riboflavin (vitamin B2) analog with antibiotic properties. It is actively taken up by many micro-organisms and targets flavinmononucleotide riboswitches and flavoproteins. It is described as the product of the tentatively named Streptomyces davawensis’ JCM 4913. Taxonomic analysis of this strain with a polyphasic approach showed that it is very closely related to Streptomyces cinnabarinus (DSM 40467). The two Streptomyces isolates were obtained from different geographical locations (the Philippines and the Kamchatka Peninsula, respectively), their genomes have been sequenced and the question was whether or not the two isolates were representatives of the same species. As we also worked with another isolate of Streptomyces cinnabarinus JS 360, the producer of the cinnabaramides, we wanted to clarify the taxonomic position of the three isolates by using a polyphasic approach. After analysis of the 16S rRNA gene sequence, we found in total 23 species of the genus Streptomyces that showed a similarity higher than 98.5 % to the three strains. We showed that ‘S. davawensis’ JCM 4913 and S. cinnabarinus DSM 40467 were very closely related but belong to two different species. Hence, we validate ‘S. davawensis’ as Streptomyces davaonensis sp. nov. with the type strain JCM 4913 (=DSM 101723). In addition, the cinnabaramide producer can be clearly differentiated from S. davaonensis and this isolate is described as Streptomyces cinnabarigriseus sp. nov. with strain JS360 (=NCCB 100590=DSM 101724) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002519
2017-12-11
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/382.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002519&mimeType=html&fmt=ahah

References

  1. Otani S, Takatsu M, Nakano M, Kasai S, Miura R. Letter: Roseoflavin, a new antimicrobial pigment from Streptomyces. J Antibiot 1974; 27: 88– 89 [CrossRef] [PubMed]
    [Google Scholar]
  2. Shinobu R. Streptomyces davawensis nov. sp. Memoirs Osaka Kyoiku Univ 1974; 23: 1– 8
    [Google Scholar]
  3. Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S et al. Riboflavin analogs as antiinfectives: occurrence, mode of action, metabolism and resistance. Curr Pharm Des 2013; 19: 2552– 2560 [CrossRef] [PubMed]
    [Google Scholar]
  4. Grill S, Busenbender S, Pfeiffer M, Köhler U, Mack M. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin. J Bacteriol 2008; 190: 1546– 1553 [CrossRef] [PubMed]
    [Google Scholar]
  5. Hemberger S, Pedrolli DB, Stolz J, Vogl C, Lehmann M et al. RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains. BMC Biotechnol 2011; 11: 119 [CrossRef] [PubMed]
    [Google Scholar]
  6. Vogl C, Grill S, Schilling O, Stülke J, Mack M et al. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol 2007; 189: 7367– 7375 [CrossRef] [PubMed]
    [Google Scholar]
  7. Pedrolli DB, Nakanishi S, Barile M, Mansurova M, Carmona EC et al. The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase. Biochem Pharmacol 2011; 82: 1853– 1859 [CrossRef] [PubMed]
    [Google Scholar]
  8. Langer S, Hashimoto M, Hobl B, Mathes T, Mack M. Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli. J Bacteriol 2013; 195: 4037– 4045 [CrossRef] [PubMed]
    [Google Scholar]
  9. Langer S, Nakanishi S, Mathes T, Knaus T, Binter A et al. The flavoenzyme azobenzene reductase AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high affinity and is less active in its RoFMN form. Biochemistry 2013; 52: 4288– 4295 [CrossRef] [PubMed]
    [Google Scholar]
  10. Lee ER, Blount KF, Breaker RR. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol 2009; 6: 187– 194 [CrossRef] [PubMed]
    [Google Scholar]
  11. Ott E, Stolz J, Lehmann M, Mack M. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol 2009; 6: 276– 280 [CrossRef] [PubMed]
    [Google Scholar]
  12. Pedrolli DB, Matern A, Wang J, Ester M, Siedler K et al. A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Nucleic Acids Res 2012; 40: 8662– 8673 [CrossRef] [PubMed]
    [Google Scholar]
  13. Pedrolli D, Langer S, Hobl B, Schwarz J, Hashimoto M et al. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. Febs J 2015; 282: 3230– 3242 [CrossRef] [PubMed]
    [Google Scholar]
  14. Pedrolli DB, Mack M. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs. Methods Mol Biol 2014; 1103: 165– 176 [CrossRef] [PubMed]
    [Google Scholar]
  15. Schwarz J, Konjik V, Jankowitsch F, Sandhoff R, Mack M. Identification of the key enzyme of roseoflavin biosynthesis. Angew Chem Int Ed Engl 2016; 55: 6103– 6106 [CrossRef] [PubMed]
    [Google Scholar]
  16. Jhulki I, Chanani PK, Abdelwahed SH, Begley TP. A remarkable oxidative cascade that replaces the riboflavin C8 methyl with an amino group during roseoflavin biosynthesis. J Am Chem Soc 2016; 138: 8324– 8327 [CrossRef] [PubMed]
    [Google Scholar]
  17. Konjik V, Brünle S, Demmer U, Vanselow A, Sandhoff R et al. The crystal structure of RosB: insights into the reaction mechanism of the first member of a family of flavodoxin-like enzymes. Angew Chem Int Ed Engl 2017; 56: 1146– 1151 [CrossRef] [PubMed]
    [Google Scholar]
  18. Jankowitsch F, Kühm C, Kellner R, Kalinowski J, Pelzer S et al. A novel N,N-8-amino-8-demethyl-d-riboflavin dimethyltransferase (RosA) catalyzing the two terminal steps of roseoflavin biosynthesis in Streptomyces davawensis. J Biol Chem 2011; 286: 38275– 38285 [CrossRef] [PubMed]
    [Google Scholar]
  19. Tongsook C, Uhl MK, Jankowitsch F, Mack M, Gruber K et al. Structural and kinetic studies on RosA, the enzyme catalysing the methylation of 8-demethyl-8-amino-d-riboflavin to the antibiotic roseoflavin. Febs J 2016; 283: 1531– 1549 [CrossRef] [PubMed]
    [Google Scholar]
  20. Jankowitsch F, Schwarz J, Rückert C, Gust B, Szczepanowski R et al. Genome sequence of the bacterium Streptomyces davawensis JCM 4913 and heterologous production of the unique antibiotic roseoflavin. J Bacteriol 2012; 194: 6818– 6827 [CrossRef] [PubMed]
    [Google Scholar]
  21. Stadler M, Seip S, Müller H, Mayer-Bartschmidt A, Brüning MA et al. Substituted Heterocycles World Patent 2004, 071, 382, 2004
    [Google Scholar]
  22. Stadler M, Bitzer J, Mayer-Bartschmid A, Müller H, Benet-Buchholz J et al. Cinnabaramides A-G: analogues of lactacystin and salinosporamide from a terrestrial streptomycete. J Nat Prod 2007; 70: 246– 252 [CrossRef] [PubMed]
    [Google Scholar]
  23. Kyle RA, Rajkumar SVN. Drug therapy: multiple myeloma. Engl J Med 2004; 351: 1860– 1873 [Crossref]
    [Google Scholar]
  24. Quade N, Huo L, Rachid S, Heinz DW, Müller R. Unusual carbon fixation gives rise to diverse polyketide extender units. Nat Chem Biol 2011; 8: 117– 124 [CrossRef] [PubMed]
    [Google Scholar]
  25. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  26. Wink J. The Actinomycetales – An Order in the Class of Actinobacteria Important to the Pharmaceutical Industry – Electronic Manual Aventis Publications; 2002
    [Google Scholar]
  27. Kutzner HJ, Kroppensted RM, Korn-Wendisch F. Methoden zur Untersuchung von Streptomyceten und einigen anderen Actinomyceten. 4. Auflage 1986
    [Google Scholar]
  28. Humble MW, King A, Phillips I. API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 1977; 30: 275– 277 [CrossRef] [PubMed]
    [Google Scholar]
  29. Wink J. Polyphasic taxonomy and antibiotic formation in some closely related genera of the family Pseudonocardiaceae. In Pandalai SG. (editor) Recent Research Developments in Antibiotics Kerala, India: Transworld Research Network; 2003; pp. 97– 140
    [Google Scholar]
  30. Prauser H, Falta R. Phagensensibilität, Zellwand-Zusammensetzung und Taxonomie von Actinomyceten. Z Allg Mikrobiol 1968; 8: 39– 46 [CrossRef]
    [Google Scholar]
  31. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  32. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47: 87– 95 [CrossRef]
    [Google Scholar]
  33. Collins MD, Jones D. Lipids in the Classification and Identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48: 459– 470 [CrossRef]
    [Google Scholar]
  34. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29: 319– 322 [CrossRef]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 110. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  36. Lane DJ. 16S/23S rRNA Sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematic New York: John Wiley and Sons; 1991; pp. 115– 175
    [Google Scholar]
  37. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32: 1363– 1371 [CrossRef] [PubMed]
    [Google Scholar]
  38. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31: 241– 250 [CrossRef] [PubMed]
    [Google Scholar]
  39. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823– 1829 [CrossRef] [PubMed]
    [Google Scholar]
  40. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22: 2688– 2690 [CrossRef] [PubMed]
    [Google Scholar]
  41. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  42. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 1981; 148: 107– 127 [CrossRef] [PubMed]
    [Google Scholar]
  43. Jin J, Lee YK, Wickes BL. Simple chemical extraction method for DNA isolation from Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol 2004; 42: 4293– 4296 [CrossRef] [PubMed]
    [Google Scholar]
  44. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  45. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 2009; 10: 154 [CrossRef] [PubMed]
    [Google Scholar]
  46. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792– 1797 [CrossRef] [PubMed]
    [Google Scholar]
  47. Guo Y, Zheng W, Rong X, Huang Y. A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 2008; 58: 149– 159 [CrossRef] [PubMed]
    [Google Scholar]
  48. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA-DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 2010; 60: 696– 703 [CrossRef] [PubMed]
    [Google Scholar]
  49. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012; 35: 7– 18 [CrossRef] [PubMed]
    [Google Scholar]
  50. Rong X, Huang Y. Multi-locus sequence analysis: taking prokaryoticsystematics to the next level. In Goodfellow M, Sutcliffe I, Chun J. (editors) Methods in Microbiologyvol. 41 Academic Press; 2014; pp. 221– 251
    [Google Scholar]
  51. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  52. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  53. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8: 275– 282 [CrossRef] [PubMed]
    [Google Scholar]
  54. Schumann P, Maier T. MALDI-TOF mass spectrometry applied to classification and identification of bacteria. Methods Microbiol 2014; 41: 275– 306 [Crossref]
    [Google Scholar]
  55. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  56. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102: 2567– 2572 [CrossRef] [PubMed]
    [Google Scholar]
  57. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1929– 1940 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002519
Loading
/content/journal/ijsem/10.1099/ijsem.0.002519
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error