1887

Abstract

Strains previously identified as phylogroup Ko6 were characterized by and gene sequencing, genome-sequence based average nucleotide identity analysis and their biochemical characteristics. and sequencing demonstrated that the Ko6 strains formed a well-demarcated sequence cluster related to, but distinct from, (which includes strains previously labelled as phylogroup Ko2) and (Ko1). The average nucleotide identity values of Ko6 with and were 91.2 and 93.47 %, respectively. The inability to metabolize melezitose differentiated most of the Ko6 strains from and . Based on its genetic and phenotypic characteristics, we propose the name for the Ko6 sequence cluster, with strain 06D021 (=CIP111401, DSM 105630) as the type strain. Strains of were isolated from human blood cultures, wound infections, antibiotic-associated haemorrhagic colitis and faecal carriage.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002517
2018-01-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/377.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002517&mimeType=html&fmt=ahah

References

  1. Grimont PAD, Grimont F. Genus Klebsiella. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey's manual of Systematic Bacteriologyvol. 2 The Proteobacteria, Part B: The Gammaproteobacteria New York: Springer-Verlag; 2005; pp.685–693
    [Google Scholar]
  2. Brisse S, Grimont F, Grimont PAD. The genus Klebsiella. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) The Prokaryotes-A Handbook on the Biology of Bacteria New York: Springer; 2006
    [Google Scholar]
  3. Beaugerie L, Metz M, Barbut F, Bellaiche G, Bouhnik Y et al. Klebsiella oxytoca as an agent of antibiotic-associated hemorrhagic colitis. Clin Gastroenterol Hepatol 2003;1:370–376 [CrossRef][PubMed]
    [Google Scholar]
  4. Högenauer C, Langner C, Beubler E, Lippe IT, Schicho R et al. Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. N Engl J Med 2006;355:2418–2426 [CrossRef][PubMed]
    [Google Scholar]
  5. Herzog KA, Schneditz G, Leitner E, Feierl G, Hoffmann KM et al. Genotypes of Klebsiella oxytoca isolates from patients with nosocomial pneumonia are distinct from those of isolates from patients with antibiotic-associated hemorrhagic colitis. J Clin Microbiol 2014;52:1607–1616 [CrossRef][PubMed]
    [Google Scholar]
  6. Brisse S, Verhoef J. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 2001;51:915–924 [CrossRef][PubMed]
    [Google Scholar]
  7. Granier SA, Plaisance L, Leflon-Guibout V, Lagier E, Morand S et al. Recognition of two genetic groups in the Klebsiella oxytoca taxon on the basis of chromosomal β-lactamase and housekeeping gene sequences as well as ERIC-1 R PCR typing. Int J Syst Evol Microbiol 2003;53:661–668 [CrossRef][PubMed]
    [Google Scholar]
  8. Granier SA, Leflon-Guibout V, Goldstein FW, Nicolas-Chanoine MH. New Klebsiella oxytoca beta-lactamase genes bla(OXY-3) and bla(OXY-4) and a third genetic group of K oxytoca based on bla(OXY-3). Antimicrob Agents Chemother 2003;47:2922–2928 [CrossRef][PubMed]
    [Google Scholar]
  9. Fevre C, Jbel M, Passet V, Weill FX, Grimont PA et al. Six groups of the OXY β-lactamase evolved over millions of years in Klebsiella oxytoca. Antimicrob Agents Chemother 2005;49:3453–3462 [CrossRef][PubMed]
    [Google Scholar]
  10. Izdebski R, Fiett J, Urbanowicz P, Baraniak A, Derde LP et al. Phylogenetic lineages, clones and β-lactamases in an international collection of Klebsiella oxytoca isolates non-susceptible to expanded-spectrum cephalosporins. J Antimicrob Chemother 2015;70:3230–3237 [CrossRef][PubMed]
    [Google Scholar]
  11. Moradigaravand D, Martin V, Peacock SJ, Parkhill J. Population structure of multidrug resistant Klebsiella oxytoca within hospitals across the UK and Ireland identifies sharing of virulence and resistance genes with K. pneumoniae. Genome Biol Evol 2017;9:574–584 [CrossRef][PubMed]
    [Google Scholar]
  12. Saha R, Farrance CE, Verghese B, Hong S, Donofrio RS. Klebsiella michiganensis sp. nov., a new bacterium isolated from a tooth brush holder. Curr Microbiol 2013;66:72–78 [CrossRef][PubMed]
    [Google Scholar]
  13. Rosenblueth M, Martínez L, Silva J, Martínez-Romero E. Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 2004;27:27–35 [CrossRef][PubMed]
    [Google Scholar]
  14. Brisse S, Passet V, Grimont PA. Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola. Int J Syst Evol Microbiol 2014;64:3146–3152 [CrossRef][PubMed]
    [Google Scholar]
  15. Carter JS, Bowden FJ, Bastian I, Myers GM, Sriprakash KS et al. Phylogenetic evidence for reclassification of Calymmatobacterium granulomatis as Klebsiella granulomatis comb. nov. Int J Syst Bacteriol 1999;49:1695–1700 [CrossRef][PubMed]
    [Google Scholar]
  16. Drancourt M, Bollet C, Carta A, Rousselier P. Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 2001;51:925–932 [CrossRef][PubMed]
    [Google Scholar]
  17. Fevre C, Passet V, Weill FX, Grimont PA, Brisse S. Variants of the Klebsiella pneumoniae OKP chromosomal β-lactamase are divided into two main groups, OKP-A and OKP-B. Antimicrob Agents Chemother 2005;49:5149–5152 [CrossRef][PubMed]
    [Google Scholar]
  18. Haeggman S, Löfdahl S, Paauw A, Verhoef J, Brisse S. Diversity and evolution of the class A chromosomal β-lactamase gene in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004;48:2400–2408 [CrossRef][PubMed]
    [Google Scholar]
  19. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  20. Naum M, Brown EW, Mason-Gamer RJ. Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the Enterobacteriaceae?. J Mol Evol 2008;66:630–642 [CrossRef][PubMed]
    [Google Scholar]
  21. Boye K, Hansen DS. Sequencing of 16S rDNA of Klebsiella: taxonomic relations within the genus and to other Enterobacteriaceae. Int J Med Microbiol 2003;292:495–503 [CrossRef][PubMed]
    [Google Scholar]
  22. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002517
Loading
/content/journal/ijsem/10.1099/ijsem.0.002517
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error