1887

Abstract

During a study of oil-degrading bacteria, three yellow-coloured, Gram-stain-negative, non-motile and rod-shaped bacteria, designated strains Ktm-14, Ktm-17 and Ktm-18, were isolated from oil-contaminated soil of Biratnagar, Morang, Nepal. The strains were able to grow at 15–37 °C, pH 4.5–10.0 and 0–2 % (w/v) NaCl concentration. Strains Ktm-14, Ktm-17 and Ktm-18 were characterized by multiple taxonomic approaches. Based on 16S rRNA gene sequence analysis, strains Ktm-14, Ktm-17 and Ktm-18 belonged to the genus and shared highest sequence similarity with Gsoil 250 (98.94 %). The only respiratory quinone was ubiquinone-10 and the predominant polyamine was spermidine. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine and sphingoglycolipids. The predominant fatty acids were Cω6, summed feature 8 (Cω7 and/or Cω6), summed feature 3 (Cω7 and/or Cω6) and C. The DNA G+C content values of strains Ktm-14, Ktm-17 and Ktm-18 were 65.8, 65.9 and 65.6 mol%, respectively. The DNA–DNA relatedness between Ktm-14 and Ktm-17 and Ktm-18 were higher than 70 % but with closely related reference strains were less than 40 %. The morphological, physiological, chemotaxonomic and phylogenetic analyses clearly distinguished strain Ktm-14 from its closest phylogenetic neighbours. Thus, strain Ktm-14 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Ktm-14 (=KEMB 9005-694=KACC 19389=JCM 32250), and strains Ktm-17 and Ktm-18 represent two additional strains.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002514
2018-01-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/364.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002514&mimeType=html&fmt=ahah

References

  1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  2. Takeuchi M, Kawai F, Shimada Y, Yokota A. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 1993;16:227–238 [CrossRef]
    [Google Scholar]
  3. Lee M, Ten LN, Lee HW, Oh HW, Im WT et al. Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 2008;58:2342–2347 [CrossRef][PubMed]
    [Google Scholar]
  4. Kim MK, Im WT, Ohta H, Lee M, Lee ST. Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 2005;43:152–157[PubMed]
    [Google Scholar]
  5. Lee HW, Ten IL, Jung HM, Liu QM, Im WT et al. Sphingopyxis panaciterrae sp. nov., isolated from soil from ginseng field. J Microbiol Biotechnol 2008;18:1011–1015[PubMed]
    [Google Scholar]
  6. Godoy F, Vancanneyt M, Martínez M, Steinbüchel A, Swings J et al. Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int J Syst Evol Microbiol 2003;53:473–477 [CrossRef][PubMed]
    [Google Scholar]
  7. Vancanneyt M, Schut F, Snauwaert C, Goris J, Swings J et al. Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 2001;51:73–79 [CrossRef][PubMed]
    [Google Scholar]
  8. Pal R, Bhasin VK, Lal R. Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 2006;56:667–670 [CrossRef][PubMed]
    [Google Scholar]
  9. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR et al. Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 2001;51:1491–1498 [CrossRef][PubMed]
    [Google Scholar]
  10. Alias-Villegas C, Jurado V, Laiz L, Saiz-Jimenez C. Sphingopyxis italica sp. nov., isolated from Roman catacombs. Int J Syst Evol Microbiol 2013;63:2565–2569 [CrossRef][PubMed]
    [Google Scholar]
  11. Chaudhary DK, Kim J. Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2016;66:3170–3176 [CrossRef][PubMed]
    [Google Scholar]
  12. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  13. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; (in press) [CrossRef][PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  16. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  23. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  24. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P. (editor) Manual of Methods for General Bacteriology Washington, DC, USA: American Society for Microbiology; 1981; pp.21–33
    [Google Scholar]
  25. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.309–329
    [Google Scholar]
  26. Chaudhary DK, Kim J. Arvibacter flaviflagrans gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016;66:4347–4354 [CrossRef][PubMed]
    [Google Scholar]
  27. Hemraj V, Diksha S, Avneet G. A review on commonly used biochemical test for bacteria. Innovare J Life Sci 2013;1:1–7
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  29. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
    [Google Scholar]
  30. Komagata K, Suzuki K. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–203[Crossref]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  33. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  34. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  35. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  36. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002514
Loading
/content/journal/ijsem/10.1099/ijsem.0.002514
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error