gen. nov., sp. nov., a new member of the from the North Sea Free

Abstract

A new member of the was isolated from the surface of a stone collected on the German North Sea shore. The bacterium, strain ANORD5, is a mesophilic, chemoheterotrophic aerobic, typical marine bacterium. Optimal growth was observed at 20–30 °C, pH 7.0–8.5 and 1–2 % sea salt. The 16S rRNA gene sequence revealed a distant relationship with the representatives of the , with less than 90 % sequence similarity. Strain ANORD5 forms a cluster together with UST20020801 (89.9 %), 1-22 (87.9 %), CC-AMWY-103B (88.1 %) and PG2S01 (87.3 %). Strain ANORD5 has a low DNA G+C content (31 mol%). Based on morphological, physiological and phylogenetic data, strain ANORD5 is considered a type strain of a new species and a new genus of the family for which the name is proposed. The type strain is ANORD5 (=NCIMB 15042=DSM 103558=MTCC 12686).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002509
2018-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/333.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002509&mimeType=html&fmt=ahah

References

  1. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39:281–296 [View Article][PubMed]
    [Google Scholar]
  2. Bowman JP, Nichols CM, Gibson JA. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 2003; 53:1343–1355 [View Article][PubMed]
    [Google Scholar]
  3. Chen LP, Xu HY, Fu SZ, Fan HX, Zhou YG et al. Lishizhenia tianjinensis sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2009; 59:2400–2403 [View Article][PubMed]
    [Google Scholar]
  4. Lau KW, Ng CY, Ren J, Lau SC, Qian PY et al. Owenweeksia hongkongensis gen. nov., sp. nov., a novel marine bacterium of the phylum 'Bacteroidetes'. Int J Syst Evol Microbiol 2005; 55:1051–1057 [View Article][PubMed]
    [Google Scholar]
  5. Lau KW, Ren J, Wai NL, Qian PY, Wong PK et al. Lishizhenia caseinilytica gen. nov., sp. nov., a marine bacterium of the phylum Bacteroidetes. Int J Syst Evol Microbiol 2006; 56:2317–2322 [View Article][PubMed]
    [Google Scholar]
  6. Lee DH, Choi EK, Moon SR, Ahn S, Lee YS et al. Wandonia haliotis gen. nov., sp. nov., a marine bacterium of the family Cryomorphaceae, phylum Bacteroidetes. Int J Syst Evol Microbiol 2010; 60:510–514 [View Article][PubMed]
    [Google Scholar]
  7. O'Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC. Fluviicola taffensis gen. nov., sp. nov., a novel freshwater bacterium of the family Cryomorphaceae in the phylum 'Bacteroidetes'. Int J Syst Evol Microbiol 2005; 55:2189–2194 [View Article][PubMed]
    [Google Scholar]
  8. Shahina M, Hameed A, Lin SY, Lai WA, Liu YC et al. Luteibaculum oceani gen. nov., sp. nov., a carotenoid-producing, lipolytic bacterium isolated from surface seawater, and emended description of the genus Owenweeksia Lau et al. 2005. Int J Syst Evol Microbiol 2013; 63:4765–4770 [View Article][PubMed]
    [Google Scholar]
  9. Yang S-H, Seo H-S, Oh H-M, Kim S-J, Lee J-H et al. Brumimicrobium mesophilum sp. nov., isolated from a tidal flat sediment, and emended descriptions of the genus Brumimicrobium and Brumimicrobium glaciale. Int J Syst Evol Microbiol 2013; 63:1105–1110 [View Article]
    [Google Scholar]
  10. Yang HX, Wang X, Liu XW, Zhang J, Yang GQ et al. Fluviicola hefeinensis sp. nov., isolated from the wastewater of a chemical factory. Int J Syst Evol Microbiol 2014; 64:700–704 [View Article][PubMed]
    [Google Scholar]
  11. Zheng X, Liu H, Song L, Zhang L, Wang H et al. Phaeocystidibacter marisrubri sp. nov., a member of the family Cryomorphaceae isolated from Red Sea sediment. Int J Syst Evol Microbiol 2015; 65:2199–2203 [View Article][PubMed]
    [Google Scholar]
  12. Zhou Y, Su J, Lai Q, Li X, Yang X et al. Phaeocystidibacter luteus gen. nov., sp. nov., a member of the family Cryomorphaceae isolated from the marine alga Phaeocystis globosa, and emended description of Owenweeksia hongkongensis. Int J Syst Evol Microbiol 2013; 63:1143–1148 [View Article][PubMed]
    [Google Scholar]
  13. Muramatsu Y, Takahashi M, Kamakura Y, Suzuki K, Nakagawa Y. Salinirepens amamiensis gen. nov., sp. nov., a member of the family Cryomorphaceae isolated from seawater, and emended descriptions of the genera Fluviicola and Wandonia. Int J Syst Evol Microbiol 2012; 62:2235–2240 [View Article][PubMed]
    [Google Scholar]
  14. Shi MJ, Han JR, Zhang H, Xie ZH, Du ZJ. Crocinitomix algicola sp. nov., isolated from Gracilaria blodgettii. Int J Syst Evol Microbiol 2017; 67:4020–4023 [View Article][PubMed]
    [Google Scholar]
  15. Bowman JP. The family Cryomorphaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes: Other Major Lineages of Bacteria and The Archaea Berlin, Heidelberg: Springer; 2014 pp. 539–550
    [Google Scholar]
  16. Malmstrom RR, Straza TRA, Cottrell MT, Kirchman DL. Diversity, abundance, and biomass production of bacterial groups in the western Arctic Ocean. Aquat Microb Ecol 2007; 47:45–55 [View Article]
    [Google Scholar]
  17. Delong EF, Franks DG, Alldredge AL. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 1993; 38:924–934 [View Article]
    [Google Scholar]
  18. Delmont TO, Eren AM, Vineis JH, Post AF. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front Microbiol 2015; 6:1090 [View Article][PubMed]
    [Google Scholar]
  19. Bowman JP. Family III. Crytomorphaceae. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey's Manual of Systematic Bacteriology New York: Springer; 2011 pp. 322–330
    [Google Scholar]
  20. Fodelianakis S, Papageorgiou N, Pitta P, Kasapidis P, Karakassis I et al. The pattern of change in the abundances of specific bacterioplankton groups is consistent across different nutrient-enriched habitats in Crete. Appl Environ Microbiol 2014; 80:3784–3792 [View Article][PubMed]
    [Google Scholar]
  21. Campbell AM, Fleisher J, Sinigalliano C, White JR, Lopez JV. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida. MicrobiologyOpen 2015; 4:390–408 [View Article][PubMed]
    [Google Scholar]
  22. Llobet-Brossa E, Rosselló-Mora R, Amann R. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 1998; 64:2691–2696[PubMed]
    [Google Scholar]
  23. Stevens H, Brinkhoff T, Simon M. Composition of free-living, aggregate-associated and sediment surface-associated bacterial communities in the German Wadden Sea. Aquatic Microbial Ecology 2005; 38:15–30 [View Article]
    [Google Scholar]
  24. Musat N, Werner U, Knittel K, Kolb S, Dodenhof T et al. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Syst Appl Microbiol 2006; 29:333–348 [View Article][PubMed]
    [Google Scholar]
  25. Gobet A, Böer SI, Huse SM, van Beusekom JE, Quince C et al. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. ISME J 2012; 6:542–553 [View Article][PubMed]
    [Google Scholar]
  26. Saha M, Wiese J, Weinberger F, Wahl M. Rapid adaptation to controlling new microbial epibionts in the invaded range promotes invasiveness of an exotic seaweed. J Ecol 2016; 105:445–457
    [Google Scholar]
  27. Boyde A, Wood C. Preparation of animal tissues for surface-scanning electron microscopy. J Microsc 1969; 90:221–249 [View Article][PubMed]
    [Google Scholar]
  28. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  29. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  30. Biebl H, Drews G. Das in-vivo-Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae. Zentralb. Bakterio. Parasitenkd Infektionskr Hyg Abt 1969; 2:425–452
    [Google Scholar]
  31. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  34. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  35. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp. 330–393
    [Google Scholar]
  36. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article][PubMed]
    [Google Scholar]
  37. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  38. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  39. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuc Acids Sym Ser 1999; 41:95–98
    [Google Scholar]
  40. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  41. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  42. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  43. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
  44. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526[PubMed]
    [Google Scholar]
  45. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  46. Tatusova TA, Madden TL. BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 1999; 174:247–250 [View Article][PubMed]
    [Google Scholar]
  47. Perrière G, Gouy M. WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 1996; 78:364–369 [View Article][PubMed]
    [Google Scholar]
  48. Yang SH, Seo HS, Oh HM, Kim SJ, Lee JH et al. Brumimicrobium mesophilum sp. nov., isolated from a tidal flat sediment, and emended descriptions of the genus Brumimicrobium and Brumimicrobium glaciale. Int J Syst Evol Microbiol 2013; 63:1105–1110 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002509
Loading
/content/journal/ijsem/10.1099/ijsem.0.002509
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed