1887

Abstract

A reddish pink-pigmented, Gram-stain-negative, aerobic and methylotrophic bacterial strain, designated strain IER25-16, was isolated from a laboratory air conditioning system in the Republic of Korea. Cells were motile rods showing catalase- and oxidase-positive reactions. Strain IER25-16 grew at 10–40 °C (optimum, 30 °C), at pH 4.0–7.0 (optimum, pH 5.0–7.0) and in the presence of 0–1.0 % (w/v) NaCl (optimum, 0 %). The major respiratory quinone was ubiquinone-10 and ubiquinone-9 was also detected as the minor respiratory quinone. Summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c) was detected as the predominant fatty acids. The genomic DNA G+C content of strain IER25-16 was 70.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain IER25-16 belonged to the genus Methylobacterium of the class Alphaproteobacteria . Strain IER25-16 was most closely related to Methylobacterium platani PMB02 (97.9 %), Methylobacterium aquaticum GR16 (97.9 %) and Methylobacterium tarhaniae N4211 (97.5 %). The average nucleotide identity and in silico DNA–DNA hybridization values between strain IER25-16 and M. platani , M. aquaticum and M. tarhaniae were 88.3, 88.8 and 89.6 % and 36.2, 37.3 and 39.3 %, respectively. The phenotypic and chemotaxonomic features and the phylogenetic inference clearly suggested that strain IER25-16 represents a novel species of the genus Methylobacterium , for which the name Methylobacterium frigidaeris sp. nov. is proposed. The type strain is strain IER25-16 (=KACC 19280=JCM 32048).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002500
2017-11-21
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/299.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002500&mimeType=html&fmt=ahah

References

  1. Patt TE, Cole GC, Hanson RS. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 1976; 26: 226– 229 [CrossRef]
    [Google Scholar]
  2. Green PN, Bousfield IJ. Emendation of Methylobacterium (Patt, Cole, and Hanson 1976); Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig. Methylobacterium radiotolerans (Ito & Iizuka 1971) comb. nov. corrig.; and Methylobacteriu mesophilicum (Austin & Goodfellow 1979) comb. nov. Int J Syst Bacteriol 1983; 33: 875– 877 [Crossref]
    [Google Scholar]
  3. Green PN. The genus Methylobacterium. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H et al. (editors) The Prokaryotes, 2nd ed. New York: Springer; 1992; pp. 2342– 2349
    [Google Scholar]
  4. Raja P, Balachandar D, Sundaram SP. Genetic diversity and phylogeny of pink-pigmented facultative methylotrophic bacteria isolated from the phyllosphere of tropical crop plants. Biol Fertil Soils 2008; 45: 45– 53 [Crossref]
    [Google Scholar]
  5. Fall R, Benson AA. Leaf methanol – the simplest natural product from plants. Trends Plant Sci 1996; 1: 296– 301 [Crossref]
    [Google Scholar]
  6. Madhaiyan M, Poonguzhali S. Methylobacterium pseudosasicola sp. nov. and Methylobacterium phyllostachyos sp. nov., isolated from bamboo leaf surfaces. Int J Syst Evol Microbiol 2014; 64: 2376– 2384 [CrossRef] [PubMed]
    [Google Scholar]
  7. Tani A, Sahin N. Methylobacterium haplocladii sp. nov. and Methylobacterium brachythecii sp. nov., isolated from bryophytes. Int J Syst Evol Microbiol 2013; 63: 3287– 3292 [CrossRef] [PubMed]
    [Google Scholar]
  8. Wellner S, Lodders N, Glaeser SP, Kämpfer P. Methylobacterium trifolii sp. nov. and Methylobacterium thuringiense sp. nov., methanol-utilizing, pink-pigmented bacteria isolated from leaf surfaces. Int J Syst Evol Microbiol 2013; 63: 2690– 2699 [CrossRef] [PubMed]
    [Google Scholar]
  9. Tani A, Sahin N, Kimbara K. Methylobacterium gnaphalii sp. nov., isolated from leaves of Gnaphalium spicatum. Int J Syst Evol Microbiol 2012; 62: 2602– 2607 [CrossRef] [PubMed]
    [Google Scholar]
  10. Wellner S, Lodders N, Kämpfer P. Methylobacterium cerastii sp. nov., isolated from the leaf surface of Cerastium holosteoides. Int J Syst Evol Microbiol 2012; 62: 917– 924 [CrossRef] [PubMed]
    [Google Scholar]
  11. Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM. Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 2009; 59: 22– 27 [CrossRef] [PubMed]
    [Google Scholar]
  12. Kang YS, Kim J, Shin HD, Nam YD, Bae JW et al. Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis. Int J Syst Evol Microbiol 2007; 57: 2849– 2853 [CrossRef] [PubMed]
    [Google Scholar]
  13. Kato Y, Asahara M, Goto K, Kasai H, Yokota A. Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2008; 58: 1134– 1141 [CrossRef] [PubMed]
    [Google Scholar]
  14. Wang X, Sahr F, Xue T, Sun B. Methylobacterium salsuginis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2007; 57: 1699– 1703 [CrossRef] [PubMed]
    [Google Scholar]
  15. Gallego V, García MT, Ventosa A. Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 2006; 56: 339– 342 [CrossRef] [PubMed]
    [Google Scholar]
  16. Gallego V, García MT, Ventosa A. Methylobacterium isbiliense sp. nov., isolated from the drinking water system of Sevilla, Spain. Int J Syst Evol Microbiol 2005; 55: 2333– 2337 [CrossRef] [PubMed]
    [Google Scholar]
  17. Gallego V, García MT, Ventosa A. Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2005; 55: 281– 287 [CrossRef] [PubMed]
    [Google Scholar]
  18. Weon HY, Kim BY, Joa JH, Son JA, Song MH et al. Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 2008; 58: 93– 96 [CrossRef] [PubMed]
    [Google Scholar]
  19. Veyisoglu A, Camas M, Tatar D, Guven K, Sazak A et al. Methylobacterium tarhaniae sp. nov., isolated from arid soil. Int J Syst Evol Microbiol 2013; 63: 2823– 2828 [CrossRef] [PubMed]
    [Google Scholar]
  20. Aslam Z, Lee CS, Kim KH, Im WT, Ten LN et al. Methylobacterium jeotgali sp. nov., a non-pigmented, facultatively methylotrophic bacterium isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2007; 57: 566– 571 [CrossRef] [PubMed]
    [Google Scholar]
  21. McDonald IR, Doronina NV, Trotsenko YA, McAnulla C, Murrell JC. Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 2001; 51: 119– 122 [CrossRef] [PubMed]
    [Google Scholar]
  22. Lee Y, Jeon CO. Sphingomonas frigidaeris sp. nov., isolated from an air conditioning system. Int J Syst Evol Microbiol 2017; 67: 3907– 3912 [CrossRef] [PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  24. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3: e56 [CrossRef] [PubMed]
    [Google Scholar]
  25. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.6a Seattle: Department of genetics, University of Washington, Seattle, WA, USA; 2002
    [Google Scholar]
  26. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312– 1313 [CrossRef] [PubMed]
    [Google Scholar]
  27. Lee I, Kim YO, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  30. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  32. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001; 25: 39– 67 [PubMed] [Crossref]
    [Google Scholar]
  33. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19: 1– 67 [Crossref]
    [Google Scholar]
  34. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  35. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19: 161– 208 [Crossref]
    [Google Scholar]
  36. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Sphingobium limneticum sp. nov. and Sphingobium boeckii sp. nov., two freshwater planktonic members of the family Sphingomonadaceae, and reclassification of Sphingomonas suberifaciens as Sphingobium suberifaciens comb. nov. Int J Syst Evol Microbiol 2013; 63: 735– 743 [CrossRef] [PubMed]
    [Google Scholar]
  37. Lee Y, Jeon CO. Sphingobium paulinellae sp. nov. and Sphingobium algicola sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017; (in press) doi:10.1099/ijsem.0.002435 [CrossRef] [PubMed]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002500
Loading
/content/journal/ijsem/10.1099/ijsem.0.002500
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error