1887

Abstract

A Gram-stain-negative, non-motile and aerobic bacterial strain, designated L1 8-17, was isolated from a marine alga, Porphyridium marinum, in South Korea. Cells of strain L1 8-17 were found to be oxidase- and catalase-positive cocci without flagella. Growth of strain L1 8-17 was observed at 20–40 °C (optimum, 37 °C), pH 6.0–10.0 (optimum, pH 7.0–8.0) and in the presence of 0–7 % (w/v) NaCl (optimum, 2–3 %). The isoprenoid quinone detected was only ubiquinone-10. Summed feature 8 (comprising C18 : 1ω7c/C18 : 1ω6c) and C16 : 0 were detected as major cellular fatty acids. The major polar lipids of strain L1 8-17 consisted of phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid, an unidentified phospholipid and an unidentified lipid. The G+C content of the genomic DNA was 59.3 mol%. Strain L1 8-17 was most closely related to Marimonas arenosa CAU 1311, Tropicibacter naphthalenivorans C02 and Donghicola eburneus SW-277 with 96.68, 96.68 and 96.60 % 16S rRNA gene sequence similarities, respectively, but the strain formed a phylogenetic lineage clearly distinct from them within the family Rhodobacteraceae . On the basis of phenotypic, chemotaxonomic and molecular properties, strain L1 8-17 represents a novel genus of the family Rhodobacteraceae , for which the name Aquicoccus porphyridii gen. nov., sp. nov. is proposed. The type strain of the type species is L1 8-17 (KACC 18806=JCM 31543).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002498
2017-11-21
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/283.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002498&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Order III. Rhodobacterales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 part C New York: Springer; 2005; pp. 161
    [Google Scholar]
  2. Garrity GM, Bell JA, Lilburn T. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2006; 56: 1– 6 [CrossRef] [PubMed]
    [Google Scholar]
  3. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macian M et al. The family Rhodobacteraceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria 2014; pp. 439– 512 [Crossref]
    [Google Scholar]
  4. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005; 71: 5665– 5677 [CrossRef] [PubMed]
    [Google Scholar]
  5. Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017; 11: 1483– 1499 [CrossRef] [PubMed]
    [Google Scholar]
  6. Yang LQ, Tang L, Liu L, Salam N, Li WJ et al. Rubricella aquisinus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae. Antonie van Leeuwenhoek 2017; 110: 331– 337 [CrossRef] [PubMed]
    [Google Scholar]
  7. Kazamia E, Czesnick H, Nguyen TT, Croft MT, Sherwood E et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 2012; 14: 1466– 1476 [CrossRef] [PubMed]
    [Google Scholar]
  8. Kouzuma A, Watanabe K. Exploring the potential of algae/bacteria interactions. Curr Opin Biotechnol 2015; 33: 125– 129 [CrossRef] [PubMed]
    [Google Scholar]
  9. Jeong SE, Jeon SH, Chun BH, Kim DW, Jeon CO. Marinicauda algicola sp. nov., isolated from a marine red alga Rhodosorus marinus. Int J Syst Evol Microbiol 2017; 67: 3423– 3427 [CrossRef] [PubMed]
    [Google Scholar]
  10. Jeong SE, Kim KH, Baek K, Jeon CO. Parasphingopyxis algicola sp. nov., isolated from a marine red alga Asparagopsis taxiformis and emended description of the genus Parasphingopyxis Uchida et al. 2012. Int J Syst Evol Microbiol 2017; 67: 3877– 3881 [CrossRef] [PubMed]
    [Google Scholar]
  11. Hyeon JW, Jeong SE, Baek K, Jeon CO. Roseitalea porphyridii gen. nov., sp. nov., isolated from a red alga, and reclassification of Hoeflea suaedae Chung et al. 2013 as Pseudohoeflea suaedae gen. nov., comb. nov. Int J Syst Evol Microbiol 2017; 67: 362– 368 [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim JM, Le NT, Chung BS, Park JH, Bae JW et al. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 2008; 74: 7313– 7320 [CrossRef] [PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  14. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3: e56 [CrossRef] [PubMed]
    [Google Scholar]
  15. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  16. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1: 138– 146 [Crossref]
    [Google Scholar]
  17. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  18. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
    [Google Scholar]
  19. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  20. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 208 [Crossref]
    [Google Scholar]
  21. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [CrossRef] [PubMed]
    [Google Scholar]
  22. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
    [Google Scholar]
  23. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K. Tropicibacter naphthalenivorans gen. nov., sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from Semarang Port in Indonesia. Int J Syst Evol Microbiol 2009; 59: 392– 396 [CrossRef] [PubMed]
    [Google Scholar]
  24. Thongphrom C, Kim JH, Yoon JH, Bora N, Kim W. Marimonas arenosa gen. nov., sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 2017; 67: 121– 126 [CrossRef] [PubMed]
    [Google Scholar]
  25. Yoon JH, Kang SJ, Oh TK. Donghicola eburneus gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007; 57: 73– 76 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002498
Loading
/content/journal/ijsem/10.1099/ijsem.0.002498
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error