1887

Abstract

A non-motile, pink-coloured and rod-shaped bacterium, designated strain POA9, was isolated from a wastewater treatment facility, Republic of Korea. Cells were Gram-reaction-negative, aerobic, catalase-positive and oxidase-negative. The major fatty acids were C16 : 1ω5c, iso-C15 : 0, summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and anteiso-C15 : 0. The strain contained MK-7 as the only isoprenoid quinone, phosphatidylethanolamine as the major polar lipid and sym-homospermidine as the major polyamine. The DNA G+C content was 57 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain POA9 forms a distinct evolutionary lineage within the radiation enclosing the members of the genus Hymenobacter , sharing the highest similarity with Hymenobacter actinosclerus CCUG 39621 (95.5 % sequence similarity) followed by Hymenobacter seoulensis 16F7G (95.5 %), Hymenobacter tibetensis XTM003 (95.4 %), Hymenobacter rutilus K2-33028 (95.4 %) and Hymenobacter psychrotolerans Tibet-IIU11 (94.9 %). A number of phenotypic characteristics distinguished strain POA9 from the related members of the genus Hymenobacter . On the basis of the evidence presented in this study, a novel species, Hymenobacter defluvii sp. nov., is proposed for strain POA9 (=KCTC 52270=JCM 31658).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002497
2017-11-17
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/277.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002497&mimeType=html&fmt=ahah

References

  1. Stanier RY. Studies on the cytophagas. J Bacteriol 1940; 40: 619– 636 [PubMed]
    [Google Scholar]
  2. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21: 374– 383 [CrossRef] [PubMed]
    [Google Scholar]
  3. Buczolits S, Denner EB, Kämpfer P, Busse HJ. Proposal of Hymenobacter norwichensis sp. nov., classification of 'Taxeobacter ocellatus', 'Taxeobacter gelupurpurascens' and 'Taxeobacter chitinovorans' as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006; 56: 2071– 2078 [CrossRef] [PubMed]
    [Google Scholar]
  4. Baik KS, Seong CN, Moon EY, Park YD, Yi H et al. Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2006; 56: 2189– 2192 [CrossRef] [PubMed]
    [Google Scholar]
  5. Buczolits S, Denner EB, Vybiral D, Wieser M, Kämpfer P et al. Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 2002; 52: 445– 456 [CrossRef] [PubMed]
    [Google Scholar]
  6. Chang X, Zheng J, Jiang F, Liu P, Kan W et al. Hymenobacter arcticus sp. nov., isolated from glacial till. Int J Syst Evol Microbiol 2014; 64: 2113– 2118 [CrossRef] [PubMed]
    [Google Scholar]
  7. Chung AP, Lopes A, Nobre MF, Morais PV. Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 2010; 33: 436– 443 [CrossRef] [PubMed]
    [Google Scholar]
  8. Kang JY, Chun J, Choi A, Moon SH, Cho JC et al. Hymenobacter koreensis sp. nov. and Hymenobacter saemangeumensis sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol 2013; 63: 4568– 4573 [CrossRef] [PubMed]
    [Google Scholar]
  9. Klassen JL, Foght JM. Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 2011; 15: 45– 57 [CrossRef] [PubMed]
    [Google Scholar]
  10. Collins MD, Hutson RA, Grant IR, Patterson MF. Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 2000; 50: 731– 734 [CrossRef] [PubMed]
    [Google Scholar]
  11. Dai J, Wang Y, Zhang L, Tang Y, Luo X et al. Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai-Tibet plateau. Syst Appl Microbiol 2009; 32: 543– 548 [CrossRef] [PubMed]
    [Google Scholar]
  12. Su S, Chen M, Teng C, Jiang S, Zhang C et al. Hymenobacter kanuolensis sp. nov., a novel radiation-resistant bacterium. Int J Syst Evol Microbiol 2014; 64: 2108– 2112 [CrossRef] [PubMed]
    [Google Scholar]
  13. Zhang Q, Liu C, Tang Y, Zhou G, Shen P et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 2007; 57: 1752– 1756 [CrossRef] [PubMed]
    [Google Scholar]
  14. Staley JT. Prosthecomicrobium and Ancalomicrobium, new prosthecate freshwater bacteria. J Bacteriol 1968; 95: 1921– 1944 [PubMed]
    [Google Scholar]
  15. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45: 240– 245 [CrossRef] [PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  17. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  18. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  21. Felsenstein J. PHYLIP (phylogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle, USA 1993
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  23. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp. 21– 132 [Crossref]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178: 703 [CrossRef] [PubMed]
    [Google Scholar]
  26. Yamaguchi S, Yokoe M. A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 2000; 66: 3337– 3343 [CrossRef] [PubMed]
    [Google Scholar]
  27. Gallego V, Sánchez-Porro C, García MT, Ventosa A. Roseomonas aquatica sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2006; 56: 2291– 2295 [CrossRef] [PubMed]
    [Google Scholar]
  28. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  29. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  30. Klassen JL, Foght JM. Differences in carotenoid composition among Hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol 2008; 74: 2016– 2022 [CrossRef] [PubMed]
    [Google Scholar]
  31. CLSI Performance Standards for Antimicrobial Susceptibility Testing 19th Informational Supplement. CLSI document M100-S19 (ISBN 1–56238–690–5) Wayne, PA: Clinical and Laboratory Standards Institute; 2009
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  33. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  34. Schenkel E, Berlaimont V, Dubois J, Helson-Cambier M, Hanocq M. Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl 1995; 668: 189– 197 [CrossRef] [PubMed]
    [Google Scholar]
  35. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics. Chichester: John Wiley & Sons Ltd; 1994; pp. 265– 309
    [Google Scholar]
  36. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
  37. Zhang G, Niu F, Busse HJ, Ma X, Liu W et al. Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai-Tibet Plateau permafrost region. Int J Syst Evol Microbiol 2008; 58: 1215– 1220 [CrossRef] [PubMed]
    [Google Scholar]
  38. Hoang VA, Kim YJ, Nguyen NL, Yang DC. Hymenobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2013; 63: 661– 666 [CrossRef] [PubMed]
    [Google Scholar]
  39. Lee JJ, Lee YH, Park SJ, Lee SY, Park S et al. Hymenobacter seoulensis sp. nov., isolated from river water. Int J Syst Evol Microbiol 2017; 67: 596– 601 [CrossRef] [PubMed]
    [Google Scholar]
  40. Kim MC, Kim CM, Kang OC, Zhang Y, Liu Z et al. Hymenobacter rutilus sp. nov., isolated from marine sediment in the Arctic. Int J Syst Evol Microbiol 2017; 67: 856– 861 [CrossRef] [PubMed]
    [Google Scholar]
  41. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63: 4386– 4395 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002497
Loading
/content/journal/ijsem/10.1099/ijsem.0.002497
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error