1887

Abstract

A Gram-stain-negative, strictly aerobic and halotolerant bacterial strain, designated strain NAP41, was isolated from a sea tidal flat in the Yellow Sea of South Korea. Cells were non-motile cocci showing oxidase- and catalase-positive activities. Growth of strain NAP41 was observed at 15–40 °C (optimum, 37 °C), at pH 6.5–9.0 (optimum, pH 7.0–7.5) and in the presence of 0.5–12 % (w/v) NaCl (optimum, 2 %). Strain NAP41 contained summed feature 8 (comprising C18 :  ω7c/C18 : 1 ω6c) and C18 : 0 as the major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, an unidentified aminolipid and three unidentified lipids were detected as the polar lipids. The G+C content of the genomic DNA was 56.0 mol%. Strain NAP41 was most closely related to Primorskyibacter insulae SSK3-2, Thalassococcus lentus YCS-24 and Roseivivax lentus DSM 29430 with 96.67, 96.39 and 96.39 % 16S rRNA gene sequence similarities, respectively, and formed a phylogenetic lineage distinct from closely related taxa within the family Rhodobacteraceae with low bootstrap values. On the basis of phenotypic, chemotaxonomic and molecular properties, strain NAP41 represents a novel species of a novel genus of the family Rhodobacteraceae, for whichthe name Aestuariicoccus marinus gen. nov., sp. nov. is proposed. The type strain of the type species is NAP41 (KACC 18431=JCM 30739).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002494
2017-11-15
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/260.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002494&mimeType=html&fmt=ahah

References

  1. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC et al. The family Rhodobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes, Alphaproteobacteria and Betaproteobacteria, 4th ed. Berlin: Springer; 2014; pp. 545– 577
    [Google Scholar]
  2. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005; 71: 5665– 5677 [CrossRef] [PubMed]
    [Google Scholar]
  3. Romanenko LA, Tanaka N, Svetashev VI, Mikhailov VV. Primorskyibacter sedentarius gen. nov., sp. nov., a novel member of the class Alphaproteobacteria from shallow marine sediments. Int J Syst Evol Microbiol 2011; 61: 1572– 1578 [CrossRef] [PubMed]
    [Google Scholar]
  4. Jin HM, Jeong HI, Jeon CO. Aliiglaciecola aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium, isolated from a sea-tidal flat and emended description of the genus Aliiglaciecola Jean et al. 2013. Int J Syst Evol Microbiol 2015; 65: 1550– 1555 [CrossRef] [PubMed]
    [Google Scholar]
  5. Baek K, Jeon CO. Rheinheimera gaetbuli sp. nov., a marine bacterium isolated from a tidal flat. Curr Microbiol 2016; 72: 344– 350 [CrossRef] [PubMed]
    [Google Scholar]
  6. Kim KH, Jin HM, Jeong HI, Jeon CO. Maribacter lutimaris sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016; 66: 1773– 1778 [CrossRef] [PubMed]
    [Google Scholar]
  7. Jeong HI, Jin HM, Jeon CO. Confluentimicrobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from sea-tidal-flat sediment, and emended description of the genus Confluentimicrobium Park et al. 2015. Int J Syst Evol Microbiol 2015; 65: 4191– 4195 [CrossRef] [PubMed]
    [Google Scholar]
  8. Kim JM, Le NT, Chung BS, Park JH, Bae JW et al. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 2008; 74: 7313– 7320 [CrossRef] [PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  10. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3: e56 [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.6a Distributed by the author; Department of Genome Sciences, University of Washington, Seattle, USA: 2002
    [Google Scholar]
  12. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312– 1313 [CrossRef] [PubMed]
    [Google Scholar]
  13. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73: 5261– 5267 [CrossRef] [PubMed]
    [Google Scholar]
  14. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1: 138– 146 [Crossref]
    [Google Scholar]
  15. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  16. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
    [Google Scholar]
  17. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  18. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 208 [Crossref]
    [Google Scholar]
  19. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [CrossRef] [PubMed]
    [Google Scholar]
  20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  21. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
    [Google Scholar]
  22. Park S, Park JM, Jung YT, Won SM, Yoon JH. Primorskyibacter insulae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2015; 65: 3971– 3976 [CrossRef] [PubMed]
    [Google Scholar]
  23. Park S, Jung YT, Kim SI, Yoon JH. Thalassococcus lentus sp. nov., an alphaproteobacterium isolated from seawater of a seaweed farm. Antonie van Leeuwenhoek 2013; 103: 465– 473 [CrossRef] [PubMed]
    [Google Scholar]
  24. Park S, Kang SJ, Oh TK, Yoon JH. Roseivivax lentus sp. nov., isolated from a tidal flat sediment, and emended description of the genus Roseivivax Suzuki et al. 1999. Int J Syst Evol Microbiol 2010; 60: 1113– 1117 [CrossRef] [PubMed]
    [Google Scholar]
  25. Jung YT, Lee JS, Yoon JH. Maliponia aquimaris gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66: 2271– 2277 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002494
Loading
/content/journal/ijsem/10.1099/ijsem.0.002494
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error