1887

Abstract

A Gram-stain-negative, aerobic, non-motile, non-spore-forming bacterial strain, designated JDTF-31, was isolated from a tidal flat in Jindo, a South Korean island. Strain JDTF-31 grew optimally at 25 °C and in the presence of 2.0 % (w/v) NaCl. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain JDTF-31 fell within the cluster comprising the type strains of species, joining the type strain of . The novel strain exhibited 16S rRNA gene sequence similarity values of 98.3, 97.8 and 97.1 % to the type strains of , and , respectively, and of 94.2–96.8 % to the type strains of the other species. Strain JDTF-31 contained MK-6 as the predominant menaquinone and iso-C and iso-C 3-OH as the major fatty acids. The major polar lipids of strain JDTF-31 were phosphatidylethanolamine, one unidentified lipid and one unidentified aminophospholipid. The DNA G+C content of strain JDTF-31 was 31.3 mol% and its DNA–DNA relatedness values with the type strains of , and were 16–27 %. The differential phenotypic properties, together with its phylogenetic and genetic data, revealed that strain JDTF-31 is separated from other recognized species of the genus . On the basis of the data presented, strain JDTF-31 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JDTF-31 (=KCTC 52749=NBRC 112783).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002487
2018-01-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/228.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002487&mimeType=html&fmt=ahah

References

  1. Bernardet JF. Family I. Flavobacteriaceae Reichenbach 1992. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York: Springer; 2011 pp. 106–111
    [Google Scholar]
  2. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001; 51:1639–1652 [View Article][PubMed]
    [Google Scholar]
  3. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  4. Kim YO, Park IS, Park S, Nam BH, Park JM et al. Tenacibaculum haliotis sp. nov., isolated from the gut of an abalone Haliotis discus hannai . Int J Syst Evol Microbiol 2017; 67:3268–3273 [View Article][PubMed]
    [Google Scholar]
  5. Park S, Choi SJ, Won SM, Yoon JH. Tenacibaculum aestuariivivum sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:4612–4618 [View Article][PubMed]
    [Google Scholar]
  6. Frette L, Jørgensen NO, Irming H, Kroer N. Tenacibaculum skagerrakense sp. nov., a marine bacterium isolated from the pelagic zone in Skagerrak, Denmark. Int J Syst Evol Microbiol 2004; 54:519–524 [View Article][PubMed]
    [Google Scholar]
  7. Yoon JH, Kang SJ, Oh TK. Tenacibaculum lutimaris sp. nov., isolated from a tidal flat in the Yellow sea, Korea. Int J Syst Evol Microbiol 2005; 55:793–798 [View Article][PubMed]
    [Google Scholar]
  8. Sheu SY, Lin KY, Chou JH, Chang PS, Arun AB et al. Tenacibaculum litopenaei sp. nov., isolated from a shrimp mariculture pond. Int J Syst Evol Microbiol 2007; 57:1148–1153 [View Article][PubMed]
    [Google Scholar]
  9. Heindl H, Wiese J, Imhoff JF. Tenacibaculum adriaticum sp. nov., from a bryozoan in the Adriatic Sea. Int J Syst Evol Microbiol 2008; 58:542–547 [View Article][PubMed]
    [Google Scholar]
  10. Piñeiro-Vidal M, Carballas CG, Gómez-Barreiro O, Riaza A, Santos Y. Tenacibaculum soleae sp. nov., isolated from diseased sole (Solea senegalensis Kaup). Int J Syst Evol Microbiol 2008; 58:881–885 [View Article][PubMed]
    [Google Scholar]
  11. Wang JT, Chou YJ, Chou JH, Chen CA, Chen WM et al. Tenacibaculum aiptasiae sp. nov., isolated from a sea anemone Aiptasia pulchella . Int J Syst Evol Microbiol 2008; 58:761–766 [View Article][PubMed]
    [Google Scholar]
  12. Lee YS, Baik KS, Park SY, Kim EM, Lee DH et al. Tenacibaculum crassostreae sp. nov., isolated from the Pacific oyster, Crassostrea gigas . Int J Syst Evol Microbiol 2009; 59:1609–1614 [View Article][PubMed]
    [Google Scholar]
  13. Kang SJ, Lee SY, Lee MH, Oh TK, Yoon JH et al. Tenacibaculum geojense sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:18–22 [View Article][PubMed]
    [Google Scholar]
  14. Piñeiro-Vidal M, Gijón D, Zarza C, Santos Y. Tenacibaculum dicentrarchi sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from European sea bass. Int J Syst Evol Microbiol 2012; 62:425–429 [View Article][PubMed]
    [Google Scholar]
  15. Kim YO, Park S, Nam BH, Jung YT, Kim DG et al. Tenacibaculum halocynthiae sp. nov., a member of the family Flavobacteriaceae isolated from sea squirt Halocynthia roretzi . Antonie van Leeuwenhoek 2013; 103:1321–1327 [View Article][PubMed]
    [Google Scholar]
  16. Kim YO, Park IS, Park S, Nam BH, Park JM et al. Tenacibaculum ascidiaceicola sp. nov., isolated from the golden sea squirt Halocynthia aurantium . Int J Syst Evol Microbiol 2016; 66:1174–1179 [View Article][PubMed]
    [Google Scholar]
  17. Hansen GH, Bergh O, Michaelsen J, Knappskog D. Flexibacter ovolyticus sp. nov., a pathogen of eggs and larvae of Atlantic halibut, Hippoglossus hippoglossus L. Int J Syst Bacteriol 1992; 42:451–458 [View Article][PubMed]
    [Google Scholar]
  18. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996; 46:502–505 [View Article]
    [Google Scholar]
  19. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of pcr-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47:111–114 [View Article]
    [Google Scholar]
  20. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH et al. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003; 53:53–57 [View Article][PubMed]
    [Google Scholar]
  21. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article][PubMed]
    [Google Scholar]
  22. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  23. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  24. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993 [Crossref]
    [Google Scholar]
  25. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  26. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  27. Reichenbach H. The order Cytophagales . In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. et al. (editors) The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York: Springer; 1992 pp. 3631–3675
    [Google Scholar]
  28. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184[PubMed]
    [Google Scholar]
  29. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  31. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley and Sons; 1994 pp. 121–161
    [Google Scholar]
  32. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [Crossref]
    [Google Scholar]
  33. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  34. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  35. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  36. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  37. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 2013; 63:4386–4395 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002487
Loading
/content/journal/ijsem/10.1099/ijsem.0.002487
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error