1887

Abstract

A Gram-stain-positive, rod-shaped, non-motile bacterial strain, designated JW-1, was isolated from activated sludge collected from the outlet of an aeration tank in a prometryn-manufacturing plant, located in Binzhou City, Shandong province, PR China. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain JW-1 belongs to the genus Leucobacter and its closest neighbours are ‘ Leucobacter kyeonggiensis ’ F3-P9 (98.95 % similarity), Leucobacter celer subsp . astrifaciens CBX151 (98.62 %), Leucobacter celer subsp . celer NAL101 (98.53 %), Leucobacter chromiiresistens JG31 (97.86 %) and Leucobacter chironomi DSM 19883 (97.37 %). DNA–DNA hybridization values with the above strains were <55 %. The DNA G+C content of strain JW-1 was 72.6 mol%. The major fatty acids of strain JW-1 were iso-C16 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and iso-C15 : 0. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and glycolipid. The predominant menaquinone was MK-11. The cell wall amino acids were 2,4-diaminobutyric acid, alanine, glutamic acid, glycine and threonine. Based on the molecular and chemotaxonomic data, as well as the physiological and biochemical characteristics, strain JW-1 is considered to represent a novel species of the genus Leucobacter , for which the name Leucobacter triazinivorans is proposed. The type strain is JW-1 (=DSM 105188=LMG 30083).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002483
2017-11-15
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/204.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002483&mimeType=html&fmt=ahah

References

  1. Takeuchi M, Weiss N, Schumann P, Yokota A. Leucobacter komagatae gen. nov., sp. nov., a new aerobic gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46: 967– 971 [CrossRef] [PubMed]
    [Google Scholar]
  2. Chun BH, Lee HJ, Jeong SE, Schumann P, Jeon CO. Leucobacter ruminantium sp. nov., isolated from the bovine rumen. Int J Syst Evol Microbiol 2017; 67: 2634– 2639 [CrossRef] [PubMed]
    [Google Scholar]
  3. Kim HJ, Lee SS. Leucobacter kyeonggiensis sp. nov., a new species isolated from dye waste water. J Microbiol 2011; 49: 1044– 1049 [CrossRef] [PubMed]
    [Google Scholar]
  4. Lee JH, Lee SS. Leucobacter margaritiformis sp. nov., isolated from bamboo extract. Curr Microbiol 2012; 64: 441– 448 [CrossRef] [PubMed]
    [Google Scholar]
  5. Her J, Lee SS. Leucobacter humi sp. nov., Isolated from forest soil. Curr Microbiol 2015; 71: 235– 242 [CrossRef] [PubMed]
    [Google Scholar]
  6. Martin E, Lodders N, Jäckel U, Schumann P, Kämpfer P. Leucobacter aerolatus sp. nov., from the air of a duck barn. Int J Syst Evol Microbiol 2010; 60: 2838– 2842 [CrossRef] [PubMed]
    [Google Scholar]
  7. Morais PV, Francisco R, Branco R, Chung AP, da Costa MS. Leucobacter chromiireducens sp. nov, and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 2004; 27: 646– 652 [CrossRef] [PubMed]
    [Google Scholar]
  8. Shin NR, Kim MS, Jung MJ, Roh SW, Nam YD et al. Leucobacter celer sp. nov., isolated from Korean fermented seafood. Int J Syst Evol Microbiol 2011; 61: 2353– 2357 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lin YC, Uemori K, de Briel DA, Arunpairojana V, Yokota A. Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 2004; 54: 1669– 1676 [CrossRef] [PubMed]
    [Google Scholar]
  10. Sturm G, Jacobs J, Spröer C, Schumann P, Gescher J. Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int J Syst Evol Microbiol 2011; 61: 956– 960 [CrossRef] [PubMed]
    [Google Scholar]
  11. Clark LC, Hodgkin J. Leucobacter musarum subsp. musarum sp. nov., subsp. nov., Leucobacter musarum subsp. japonicus subsp. nov., and Leucobacter celer subsp. astrifaciens subsp. nov., three nematopathogenic bacteria isolated from Caenorhabditis, with an emended description of Leucobacter celer. Int J Syst Evol Microbiol 2015; 65: 3977– 3984 [CrossRef] [PubMed]
    [Google Scholar]
  12. Halpern M, Shakéd T, Pukall R, Schumann P. Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 2009; 59: 665– 670 [CrossRef] [PubMed]
    [Google Scholar]
  13. Weon HY, Anandham R, Tamura T, Hamada M, Kim SJ et al. Leucobacter denitrificans sp. nov., isolated from cow dung. J Microbiol 2012; 50: 161– 165 [CrossRef] [PubMed]
    [Google Scholar]
  14. Ue H. Leucobacter exalbidus sp. nov., an actinobacterium isolated from a mixed culture from compost. J Gen Appl Microbiol 2011; 57: 27– 33 [CrossRef] [PubMed]
    [Google Scholar]
  15. Zhu D, Zhang P, Li P, Wu J, Xie C et al. Description of Leucobacter holotrichiae sp. nov., isolated from the gut of Holotrichia oblita larvae. Int J Syst Evol Microbiol 2016; 66: 1857– 1861 [CrossRef] [PubMed]
    [Google Scholar]
  16. Fang W, Li X, Tan XM, Wang LF, Piao CG et al. Leucobacter populi sp. nov. isolated from a symptomatic bark of Populus × euramericana canker. Int J Syst Evol Microbiol 2016; 66: 2254– 2258 [CrossRef] [PubMed]
    [Google Scholar]
  17. Yun JH, Roh SW, Kim MS, Jung MJ, Park EJ et al. Leucobacter salsicius sp. nov., from a salt-fermented food. Int J Syst Evol Microbiol 2011; 61: 502– 506 [CrossRef] [PubMed]
    [Google Scholar]
  18. Behrendt U, Ulrich A, Schumann P. Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 2008; 58: 2574– 2578 [CrossRef] [PubMed]
    [Google Scholar]
  19. Lai WA, Lin SY, Hameed A, Hsu YH, Liu YC et al. Leucobacter zeae sp. nov., isolated from the rhizosphere of maize (Zea mays L.). Int J Syst Evol Microbiol 2015; 65: 4734– 4742 [CrossRef] [PubMed]
    [Google Scholar]
  20. Morais PV, Paulo C, Francisco R, Branco R, Paula Chung A et al. Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 2006; 29: 414– 421 [CrossRef] [PubMed]
    [Google Scholar]
  21. Liu J, Hua R, Lv P, Tang J, Wang Y et al. Novel hydrolytic de-methylthiolation of the s-triazine herbicide prometryn by Leucobacter sp. JW-1. Sci Total Environ 2017; 579: 115– 123 [CrossRef] [PubMed]
    [Google Scholar]
  22. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, UK: John Wiley & Sons Press; 1991; pp. 115– 175
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  24. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  29. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol today 2006; 33: 152– 155
    [Google Scholar]
  30. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195: 413– 418 [CrossRef] [PubMed]
    [Google Scholar]
  31. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  32. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  33. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002; 52: 1551– 1558 [CrossRef] [PubMed]
    [Google Scholar]
  34. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  35. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  36. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  38. Tindall BJ. A Comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  39. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  40. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36: 407– 477 [PubMed]
    [Google Scholar]
  41. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38: 101– 129 [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002483
Loading
/content/journal/ijsem/10.1099/ijsem.0.002483
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error