1887

Abstract

A novel Gram-stain-positive, motile and facultatively anaerobic strain, designated NC2-31, was isolated from sediment from the coast of Weihai, PR China. Optimal growth occurred at 37 °C, pH 7.5 and with 2.0–3.0 % (w/v) NaCl. MK-7 was the major respiratory quinone. -diaminopimelic acid was a diagnostic diamino acid in the peptidoglycan. The major polar lipids of NC2-31 were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). The genomic DNA G+C content of the strain was 46.3 mol%. The predominant cellular fatty acids (>10.0 %) of NC2-31 were iso-C (18.9 %), anteiso-C (15.8 %), summed feature 3 (Cω7 and/or iso-C 2-OH) (15.3 %) and iso-C (10.3 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that NC2-31 should be classified as representing a member of the genus . Based on data from the current polyphasic study, NC2-31 represents a novel species within the genus , for which the name sp. nov. is proposed with type strain NC2-31 (=KCTC 33721=MCCC 1K01239).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002482
2018-01-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/198.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002482&mimeType=html&fmt=ahah

References

  1. Bae SS, Lee JH, Kim SJ. Bacillus alveayuensis sp. nov., a thermophilic bacterium isolated from deep-sea sediments of the Ayu Trough. Int J Syst Evol Microbiol 2005;55:1211–1215 [CrossRef][PubMed]
    [Google Scholar]
  2. Zhang J, Wang J, Fang C, Song F, Xin Y et al. Bacillus oceanisediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2010;60:2924–2929 [CrossRef][PubMed]
    [Google Scholar]
  3. You ZQ, Li J, Qin S, Tian XP, Wang FZ et al. Bacillus abyssalis sp. nov., isolated from a sediment of the South China Sea. Antonie van Leeuwenhoek 2013;103:963–969 [CrossRef][PubMed]
    [Google Scholar]
  4. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  5. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  6. Westram R, Bader K, Pruesse E, Kumar Y, Meier H et al. ARB: a software environment for sequence data. In Bruijn FJD. (editor) Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches Hoboken, NJ: John Wiley & Sons; 2011; pp.399–406[Crossref]
    [Google Scholar]
  7. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  8. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  9. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  10. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[Crossref]
    [Google Scholar]
  11. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6 Distributed by the author Seattle, USA: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  12. Kämpfer P, Busse HJ, McInroy JA, Hu CH, Kloepper JW et al. Bacillus zeae sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2017;67:1241–1246 [CrossRef][PubMed]
    [Google Scholar]
  13. Kämpfer P, Falsen E, Lodders N, Langer S, Busse HJ et al. Ornithinibacillus contaminans sp. nov., an endospore-forming species. Int J Syst Evol Microbiol 2010;60:2930–2934 [CrossRef][PubMed]
    [Google Scholar]
  14. Tiago I, Pires C, Mendes V, Morais PV, da Costa MS et al. Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater. Int J Syst Evol Microbiol 2006;56:2571–2574 [CrossRef][PubMed]
    [Google Scholar]
  15. Heyrman J, Vanparys B, Logan NA, Balcaen A, Rodríguez-Díaz M et al. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 2004;54:47–57 [CrossRef][PubMed]
    [Google Scholar]
  16. Bendjama E, Loucif L, Diene SM, Michelle C, Gacemi-Kirane D et al. Non-contiguous finished genome sequence and description of Bacillus massilioalgeriensis sp. nov. Stand Genomic Sci 2014;9:1046–1061 [CrossRef][PubMed]
    [Google Scholar]
  17. Lim JM, Jeon CO, Kim CJ. Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 2006;56:2903–2908 [CrossRef][PubMed]
    [Google Scholar]
  18. Arfman N, Dijkhuizen L, Kirchhof G, Ludwig W, Schleifer KH et al. Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria. Int J Syst Bacteriol 1992;42:439–445 [CrossRef][PubMed]
    [Google Scholar]
  19. Subhash Y, Sasikala C, Ramana C. Bacillus luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014;64:1580–1586 [CrossRef][PubMed]
    [Google Scholar]
  20. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  21. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  22. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  23. Conn HJ, Bartholomew JW, Jennison MW. Staining methods. In Manual of Microbial Methods New York: McGraw-Hill; 1957; pp.30–60
    [Google Scholar]
  24. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  25. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  26. Cowan ST, Steel KJ. Bacterial characters and characterization. In Cowan ST. (editor) Cowan and Steel’s Manual for the Identification of Medical Bacteria, 2nd ed. Cambridge, UK: Cambridge University Press; 1974
    [Google Scholar]
  27. Dong X, Cai M. Determination of biochemical characteristics. In Dong X, Cai M. (editors) Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp.370–398
    [Google Scholar]
  28. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
  29. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  30. Schumann P. Peptidoglycan structure. Methods Microbiol 2011;38:101–129[Crossref]
    [Google Scholar]
  31. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006;56:781–786 [CrossRef][PubMed]
    [Google Scholar]
  32. Nakamura LK, Roberts MS, Cohan FM. Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int J Syst Bacteriol 1999;49:1211–1215 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002482
Loading
/content/journal/ijsem/10.1099/ijsem.0.002482
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error