1887

Abstract

Two novel bacterial strains (4M3-2 and 10-107-7) were isolated from poplar tree bark. The strains were Gram-stain-negative facultative aerobes, and produced short rods that were motile because of polar flagella. A phylogenetic tree was reconstructed based on 16S rRNA gene sequences indicating that the two novel strains are related to species of the genus and . The two novel strains shared the highest 16S rRNA gene sequence similarities with CW5 7Y-4 (97.1 %) and DSM 21988 (96.6 %)o. The lipids of the novel strain contain diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine and sulfoquinovosyl diacylglycerol. The presence of a distinct glycolipid (sulfoquinovosyl diacylglycerol) is an important chemotaxonomic feature used to distinguish between species of the genera, and . Additionally, the DNA–DNA hybridization results indicated that the two novel strains represent a novel taxon distinct from . The results of the 16S rRNA gene sequence analysis, as well as the physiological and biochemical characteristics imply that the two novel strains should be assigned to a novel species, with the proposed name sp. nov. The type strain is 4M3-2 (=CFCC 11187=KCTC 42087).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002479
2018-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/487.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002479&mimeType=html&fmt=ahah

References

  1. Denner EB, Smith GW, Busse HJ, Schumann P, Narzt T et al. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int J Syst Evol Microbiol 2003; 53:1115–1122 [View Article][PubMed]
    [Google Scholar]
  2. Jurado V, Gonzalez JM, Laiz L, Saiz-Jimenez C. Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from Altamira Cave. Int J Syst Evol Microbiol 2006; 56:2583–2585 [View Article][PubMed]
    [Google Scholar]
  3. Weon HY, Kim BY, Yoo SH, Joa JH, Lee KH et al. Aurantimonas ureilytica sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2007; 57:1717–1720 [View Article][PubMed]
    [Google Scholar]
  4. Kim MS, Hoa KT, Baik KS, Park SC, Seong CN. Aurantimonas frigidaquae sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 2008; 58:1142–1146 [View Article][PubMed]
    [Google Scholar]
  5. Rathsack K, Reitner J, Stackebrandt E, Tindall BJ. Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int J Syst Evol Microbiol 2011; 61:2722–2728 [View Article][PubMed]
    [Google Scholar]
  6. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. Int J Syst Evol Microbiol 2013; 63:2430–2435 [View Article][PubMed]
    [Google Scholar]
  7. Madhaiyan M, Hu CJ, Jegan Roy J, Kim SJ, Weon HY et al. Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63:1702–1708 [View Article][PubMed]
    [Google Scholar]
  8. Cho Y, Lee I, Yang YY, Baek K, Yoon SJ et al. Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice. Int J Syst Evol Microbiol 2015; 65:3564–3569 [View Article][PubMed]
    [Google Scholar]
  9. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Aureimonas galii sp. nov. and Aureimonas pseudogalii sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016; 66:3345–3354 [View Article][PubMed]
    [Google Scholar]
  10. Guo B, Liu Y, Gu Z, Shen L, Liu K et al. Aureimonas glaciei sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2017; 67:485–488 [View Article][PubMed]
    [Google Scholar]
  11. Liu BB, Wang HF, Li QL, Zhou XK, Zhang YG et al. Aurantimonas endophytica sp. nov., a novel endophytic bacterium isolated from roots of Anabasis elatior (C. A. Mey.) Schischk. Int J Syst Evol Microbiol 2016; 66:4112–4117 [View Article][PubMed]
    [Google Scholar]
  12. Li Y, He W, Ren F, Guo L, Chang J et al. A canker disease of Populus × euramericana in China caused by Lonsdalea quercina subsp. populi. Plant Disease 2014; 98:368–378 [View Article]
    [Google Scholar]
  13. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991 pp. 115–175
    [Google Scholar]
  14. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003; 55:541–555 [View Article][PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  17. Li Y, Song LM, Guo MW, Wang LF, Liang WX. Sphingobacterium populi sp. nov., isolated from bark of Populus × euramericana. Int J Syst Evol Microbiol 2016; 66:3456–3462 [View Article][PubMed]
    [Google Scholar]
  18. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Manual of Methods for General and Microbiology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  19. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Notes 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  20. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  21. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  22. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997; 47:1129–1133 [View Article][PubMed]
    [Google Scholar]
  23. Du HJ, Zhang YQ, Liu HY, Su J, Wei YZ et al. Allonocardiopsis opalescens gen. nov., sp. nov., a new member of the suborder Streptosporangineae, from the surface-sterilized fruit of a medicinal plant. Int J Syst Evol Microbiol 2013; 63:900–904 [View Article][PubMed]
    [Google Scholar]
  24. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  25. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  26. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  27. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002; 52:1551–1558 [View Article][PubMed]
    [Google Scholar]
  28. Hulton CS, Higgins CF, Sharp PM. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 1991; 5:825–834 [View Article][PubMed]
    [Google Scholar]
  29. Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 1994; 60:2286–2295[PubMed]
    [Google Scholar]
  30. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002479
Loading
/content/journal/ijsem/10.1099/ijsem.0.002479
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error