1887

Abstract

A Gram-reaction-negative, strictly aerobic, non-motile and rod-shaped bacterium, designated strain BXN5-31, was isolated from soil of a ginseng field, and its taxonomic position was investigated using a polyphasic approach. Strain BXN5-31 grew at 18–37 °C and at pH 6.0–8.0 on R2A medium. Based on 16S rRNA gene sequence similarity, strain BXN5-31 was shown to belong to the genus and was closely related to HME6664, XM-003 and WS71. The DNA G+C content was 43.6 %. The predominant respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were iso-C, iso-C 3-OH and summed feature 3 (comprising Cω6 and/or Cω7). The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The DNA–DNA hybridization values between strain BXN5-31 and three reference strains ( HME6664, XM-003 and WS71) were 9.4±1.9, 8.2±1.3 and 5.7±0.7 %, respectively. The DNA G+C content and chemotaxonomic data supported the affiliation of strain BXN5-31 to the genus . Moreover, the physiological and biochemical results and low level of DNA–DNA relatedness allowed the phenotypic and genotypic differentiation of strain BXN5-31 from recognized species of the genus . The isolate therefore represents a novel species, for which the name sp. nov. is proposed. The type strain is BXN5-31 (=KACC 14957=JCM 17085).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002473
2018-01-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/149.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002473&mimeType=html&fmt=ahah

References

  1. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007; 57:2349–2354 [View Article][PubMed]
    [Google Scholar]
  2. Urai M, Aizawa T, Nakagawa Y, Nakajima M, Sunairi M. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 2008; 58:2046–2050 [View Article][PubMed]
    [Google Scholar]
  3. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter . Int J Syst Evol Microbiol 2010; 60:134–139 [View Article][PubMed]
    [Google Scholar]
  4. Tang J, Huang J, Qiao Z, Wang R, Wang G. Mucilaginibacter pedocola sp. nov., isolated from a heavy-metal-contaminated paddy field. Int J Syst Evol Microbiol 2016; 66:4033–4038 [View Article][PubMed]
    [Google Scholar]
  5. Jing YT, Wang P, Zhang H, Dong WL, Jing YJ et al. Mucilaginibacter yixingensis sp. nov., isolated from vegetable soil. Int J Syst Evol Microbiol 2016; 66:1779–1784 [View Article][PubMed]
    [Google Scholar]
  6. Joung Y, Kang H, Lee BI, Kim H, Joh K et al. Mucilaginibacter aquaedulcis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2015; 65:698–703 [View Article][PubMed]
    [Google Scholar]
  7. Lee KC, Kim KK, Eom MK, Kim JS, Kim DS et al. Mucilaginibacter gotjawali sp. nov., isolated from soil of a lava forest. Int J Syst Evol Microbiol 2015; 65:952–958 [View Article][PubMed]
    [Google Scholar]
  8. Liu Q, Siddiqi MZ, Kim MS, Kim SY, Im WT. Mucilaginibacter hankyongensis sp. nov., isolated from soil of ginseng field Baekdu Mountain. J Microbiol 2017; 55:525–530 [View Article][PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  10. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  11. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  12. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [Crossref]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  18. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993[PubMed]
    [Google Scholar]
  19. Atlas RM. Handbook of Microbiological Media Boca Raton, FL, USA: CRC Press; 1993
    [Google Scholar]
  20. Moore DD, Dowhan D. Preparation and analysis of DNA. In Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) Current Protocols in Molecular Biology New York: Wiley; 1995 pp. 2–11
    [Google Scholar]
  21. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  22. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. (editors) Methods in Phytobacteriology Budapest: Akademiai Kaido; 1990 pp. 199–204
    [Google Scholar]
  23. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  26. Chen XY, Zhao R, Tian Y, Kong BH, Li XD et al. Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter . Int J Syst Evol Microbiol 2014; 64:1395–1400 [View Article][PubMed]
    [Google Scholar]
  27. Hwang YM, Baik KS, Seong CN. Mucilaginibacter defluvii sp. nov., isolated from a dye wastewater treatment facility. Int J Syst Evol Microbiol 2014; 64:565–571 [View Article][PubMed]
    [Google Scholar]
  28. Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Mucilaginibacter auburnensis sp. nov., isolated from a plant stem. Int J Syst Evol Microbiol 2014; 64:1736–1742 [View Article][PubMed]
    [Google Scholar]
  29. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [Crossref]
    [Google Scholar]
  30. Joung Y, Kim H, Kang H, Lee BI, Ahn TS et al. Mucilaginibacter soyangensis sp. nov., isolated from a lake. Int J Syst Evol Microbiol 2014; 64:413–419 [View Article][PubMed]
    [Google Scholar]
  31. Lee JH, Kim MS, Kang JW, Baik KS, Seong CN. Mucilaginibacter puniceus sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016; 66:4549–4554 [View Article][PubMed]
    [Google Scholar]
  32. Luo X, Zhang L, Dai J, Liu M, Zhang K et al. Mucilaginibacter ximonensis sp. nov., isolated from Tibetan soil. Int J Syst Evol Microbiol 2009; 59:1447–1450 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002473
Loading
/content/journal/ijsem/10.1099/ijsem.0.002473
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error