1887

Abstract

Three Gram-stain-positive, non-spore-forming, microaerophilic and fructose-6-phosphate phosphoketolase positive strains were isolated from a faecal sample of an adult subject of the emperor tamarin (Saguinus imperator). Given that the isolates revealed identical BOX PCR profiles, strain TRI 5 was selected as a representative and characterized further. Comparative analysis of 16S rRNA gene sequence similarity revealed that strain TRI 5 was closely related to Bifidobacterium saguini DSM 23967 (96.4 %) and to Bifidobacterium longum subsp. longum ATCC 15708 (96.2 %). Multilocus sequence analyses of five housekeeping genes showed the close phylogenetic relatedness of this strain to Bifidobacterium breve DSM 20213 (hsp60 94.1 %), Bifidobacterium saguini DSM 23967 (clpC 91 %), Bifidobacterium avesanii DSM 100685 (dnaG 80.3 %), Bifidobacterium longum subsp. infantis ATCC 15697 (dnaJ 85.3 %) and Bifidobacterium longum subsp. longum ATCC 15708 (rpoB 93 %), respectively. The peptidoglycan type was A3β, with an interpeptide bridge comprising l-Orn (Lys) – l-Ser – l-Ala – l-Thr – l-Ala. The DNA G+C content of strain TRI 5 was 60.9 mol%. Based on the data provided, strain TRI 5 represents a novel species of the genus Bifidobacterium for which the name Bifidobacterium callitrichidarum sp. nov. is proposed. The type strain is TRI 5 (=DSM 103152=JCM 31790).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002472
2017-11-08
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/141.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002472&mimeType=html&fmt=ahah

References

  1. Tannock GW. Normal Microflora – An Introduction to Microbes Inhabiting the Human Body London: Chapman & Hall; 1995
    [Google Scholar]
  2. Simpson JM, Martineau B, Jones WE, Ballam JM, Mackie RI. Characterization of fecal bacterial populations in canines: effects of age, breed and dietary fiber. Microb Ecol 2002; 44: 186– 197 [CrossRef] [PubMed]
    [Google Scholar]
  3. Endo A, Futagawa-Endo Y, Dicks LM. Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores. Anaerobe 2010; 16: 590– 596 [CrossRef] [PubMed]
    [Google Scholar]
  4. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 2008; 74: 4985– 4996 [CrossRef] [PubMed]
    [Google Scholar]
  5. Xu B, Xu W, Yang F, Li J, Yang Y et al. Metagenomic analysis of the pygmy loris fecal microbiome reveals unique functional capacity related to metabolism of aromatic compounds. PLoS One 2013; 8: e56565 [CrossRef] [PubMed]
    [Google Scholar]
  6. Garrity G, Bell J, Tg L. Taxonomic outline of the prokaryotes. In: Bergey’s Manual of Systematic Bacteriology New York; Berlin, Heidelberg: Springer; 2004
    [Google Scholar]
  7. Mattarelli P, Biavati B, Holzapfel WH, Wood BJ. The Bifidobacteria and Related Organisms: Biology, Taxonomy, Applications, 1st ed. Elsevier Science Publishing Co Inc; 2017
    [Google Scholar]
  8. Pechar R, Killer J, Švejstil R, Salmonová H, Geigerová M et al. Galliscardovia ingluviei gen. nov., sp. nov., a thermophilic bacterium of the family Bifidobacteriaceae isolated from the crop of a laying hen (Gallus gallus f. domestica). Int J Syst Evol Microbiol 2017; 67: 2403– 2411 [CrossRef] [PubMed]
    [Google Scholar]
  9. Duranti S, Mangifesta M, Lugli GA, Turroni F, Anzalone R et al. Bifidobacterium vansinderenii sp. nov., isolated from faeces of emperor tamarin (Saguinus imperator). Int J Syst Evol Microbiol 2017; 67: doi:10.1099/ijsem.0.002243 [CrossRef] [PubMed]
    [Google Scholar]
  10. Mrázek J, Strosová L, Fliegerová K, Kott T, Kopecný J. Diversity of insect intestinal microflora. Folia Microbiol 2008; 53: 229– 233 [CrossRef] [PubMed]
    [Google Scholar]
  11. Killer J, Kopečný J, Mrázek J, Koppová I, Havlík J et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2011; 61: 1315– 1321 [CrossRef] [PubMed]
    [Google Scholar]
  12. Snowdon CT, Soini P. The tamarins, genus Saguinus. In Mittermeier RA, Rylands AB, Coimbra-Filho AF, Fonseca GAB. (editors) Ecology and Behavior of Neotropical Primates Washington, DC: WorldWidlife Fund; 1988; pp. 223– 298
    [Google Scholar]
  13. Pinna C, Nannoni E, Rigoni G, Grandi M, Vecchiato CG et al. Effects of yogurt dietary supplementation on the intestinal ecosystem of a population of Emperor tamarins (Saguinus imperator). Prog Nutr 2015; 17: 231– 237
    [Google Scholar]
  14. Scardovi V. Genus Bifidobacterium. In Sneath PHA, Nair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology Baltimore: The Williams & Wilkins Co; 1986; pp. 1418– 1434
    [Google Scholar]
  15. Rada V, Sirotek K, Petr J. Evaluation of selective media for bifidobacteria in poultry and rabbit caecal samples. Zentralbl Veterinarmed B 1999; 46: 369– 373 [PubMed]
    [Google Scholar]
  16. Michelini S, Modesto M, Filippini G, Spiezio C, Sandri C et al. Bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.). Syst Appl Microbiol 2016; 39: 229– 236 [CrossRef] [PubMed]
    [Google Scholar]
  17. Masco L, Huys G, Gevers D, Verbrugghen L, Swings J. Identification of Bifidobacterium species using rep-PCR fingerprinting. Syst Appl Microbiol 2003; 26: 557– 563 [CrossRef] [PubMed]
    [Google Scholar]
  18. Michelini S, Modesto M, Pisi A, Filippini G, Sandri C et al. Bifidobacterium eulemuris sp. nov. isolated from the faeces of the black lemur (Eulemur macaco). Int J Syst Evol Microbiol 2016; 66: 1567– 1576 [Crossref]
    [Google Scholar]
  19. Kim BJ, Kim HY, Yun YJ, Kim BJ, Kook YH. Differentiation of Bifidobacterium species using partial RNA polymerase β-subunit (rpoB) gene sequences. Int J Syst Evol Microbiol 2010; 60: 2697– 2704 [CrossRef] [PubMed]
    [Google Scholar]
  20. Ventura M, Canchaya C, del Casale A, Dellaglio F, Neviani E et al. Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 2006; 56: 2783– 2792 [CrossRef] [PubMed]
    [Google Scholar]
  21. Cavalli-Sforza LL, Edwards AW. Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 1967; 19: 233– 257 [PubMed]
    [Google Scholar]
  22. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  25. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol 2014; 80: 6290– 6302 [CrossRef] [PubMed]
    [Google Scholar]
  26. Martens M, Dawyndt P, Coopman R, Gillis M, de Vos P et al. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 2008; 58: 200– 214 [CrossRef] [PubMed]
    [Google Scholar]
  27. Jian W, Zhu L, Dong X. New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. Int J Syst Evol Microbiol 2001; 51: 1633– 1638 [CrossRef] [PubMed]
    [Google Scholar]
  28. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30: 772– 780 [CrossRef] [PubMed]
    [Google Scholar]
  29. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56: 564– 577 [CrossRef] [PubMed]
    [Google Scholar]
  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [PubMed] [Crossref]
    [Google Scholar]
  32. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81: 461– 466 [CrossRef] [PubMed]
    [Google Scholar]
  33. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [Crossref]
    [Google Scholar]
  34. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [Crossref]
    [Google Scholar]
  35. Biavati B, Mattarelli P. Genus Bifidobacterium. In Goodfellow M, Kampfer P, Busse H-J, Suzuki K-I, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2012; pp. 171– 206
    [Google Scholar]
  36. Killer J, Kopečný J, Mrázek J, Havlík J, Koppová I et al. Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 2010; 33: 359– 366 [CrossRef] [PubMed]
    [Google Scholar]
  37. Modesto M, Michelini S, Stefanini I, Sandri C, Spiezio C et al. Bifidobacterium lemurum sp. nov., from faeces of the ring-tailed lemur (Lemur catta). Int J Syst Evol Microbiol 2015; 65: 1726– 1734 [CrossRef] [PubMed]
    [Google Scholar]
  38. Watanabe K, Makino H, Sasamoto M, Kudo Y, Fujimoto J et al. Bifidobacterium mongoliense sp. nov., from airag, a traditional fermented mare's milk product from Mongolia. Int J Syst Evol Microbiol 2009; 59: 1535– 1540 [CrossRef] [PubMed]
    [Google Scholar]
  39. Orban JI, Patterson JA. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J Microbiol Methods 2000; 40: 221– 224 [PubMed] [Crossref]
    [Google Scholar]
  40. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38: 101– 129 [Crossref]
    [Google Scholar]
  41. Yanokura E, Oki K, Makino H, Modesto M, Pot B et al. Subspeciation of Bifidobacterium longum by multilocus approaches and amplified fragment length polymorphism: description of B. longum subsp. suillum subsp. nov., isolated from the faeces of piglets. Syst Appl Microbiol 2015; 38: 305– 314 [CrossRef] [PubMed]
    [Google Scholar]
  42. Endo A, Futagawa-Endo Y, Schumann P, Pukall R, Dicks LM. Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov. isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas). Syst Appl Microbiol 2012; 35: 92– 97 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002472
Loading
/content/journal/ijsem/10.1099/ijsem.0.002472
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error