1887

Abstract

A novel actinomycete, designated strain 1H-SSA4, was isolated from the head of an ant (Camponotus japonicus Mayr) and was found to produce angucyclinone antibiotics. A polyphasic approach was used to determine the taxonomic status of strain 1H-SSA4. The DNA G+C content of the draft genome sequence, consisting of 11.4 Mbp, was 70.0 mol%. 16S rRNA gene sequence similarity studies showed that strain 1H-SSA4 belongs to the genus Streptomyces with the highest sequence similarity to Streptomyces hygroscopicus subsp. ossamyceticus NBRC 13983 (98.9 %), and phylogenetically clustered with this species, Streptomyces torulosus LMG 20305 (98.8 %), Streptomyces ipomoeae NBRC 13050 (98.5 %) and Streptomyces decoyicus NRRL 2666 (98.4 %). The morphological and chemotaxonomic properties of the strain were also consistent with those members of the genus Streptomyces . A combination of DNA–DNA hybridization experiments and phenotypic tests were carried out between strain 1H-SSA4 and the above-mentioned strains, which further clarified their relatedness and demonstrated that strain 1H-SSA4 could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces , for which the name Streptomyces capitiformicae sp. nov. is proposed. The type strain is 1H-SSA4 (=CGMCC 4.7403=DSM 104537).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002468
2017-11-07
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/118.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002468&mimeType=html&fmt=ahah

References

  1. Demain AL. Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 2014; 41: 185– 201 [CrossRef] [PubMed]
    [Google Scholar]
  2. Lee LH, Zainal N, Azman AS, Eng SK, Ab Mutalib NS et al. Streptomyces pluripotens sp. nov., a bacteriocin-producing streptomycete that inhibits meticillin-resistant Staphylococcus aureus. Int J Syst Evol Microbiol 2014; 64: 3297– 3306 [CrossRef] [PubMed]
    [Google Scholar]
  3. Ser HL, Palanisamy UD, Yin WF, Chan KG, Goh BH et al. Streptomyces malaysiense sp. nov.: a novel Malaysian mangrove soil actinobacterium with antioxidative activity and cytotoxic potential against human cancer cell lines. Sci Rep 2016; 6: 24247 [CrossRef] [PubMed]
    [Google Scholar]
  4. Law JW, Ser HL, Duangjai A, Saokaew S, Bukhari SI et al. Streptomyces colonosanans sp. nov., a novel actinobacterium isolated from Malaysia mangrove soil exhibiting antioxidative activity and cytotoxic potential against human colon cancer cell lines. Front Microbiol 2017; 8: 877 [CrossRef] [PubMed]
    [Google Scholar]
  5. Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58: 1– 26 [CrossRef] [PubMed]
    [Google Scholar]
  6. Alvin A, Miller KI, Neilan BA. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 2014; 169: 483– 495 [CrossRef] [PubMed]
    [Google Scholar]
  7. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 2014; 169: 262– 278 [CrossRef] [PubMed]
    [Google Scholar]
  8. Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science 2009; 325: 1089– 1093 [CrossRef] [PubMed]
    [Google Scholar]
  9. Bull AT, Stach JE. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 2007; 15: 491– 499 [CrossRef] [PubMed]
    [Google Scholar]
  10. Currie CR, Scott JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 1999; 398: 701– 704 [CrossRef]
    [Google Scholar]
  11. Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J et al. Bacterial protection of beetle-fungus mutualism. Science 2008; 322: 63 [CrossRef] [PubMed]
    [Google Scholar]
  12. Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C et al. Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 2010; 6: 261– 263 [CrossRef] [PubMed]
    [Google Scholar]
  13. Bai L, Liu C, Guo L, Piao C, Li Z et al. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr. Antonie van Leeuwenhoek 2016; 109: 253– 261 [CrossRef] [PubMed]
    [Google Scholar]
  14. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  15. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50: 2031– 2036 [CrossRef] [PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  18. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge Universiry Press; 1983; [Crossref]
    [Google Scholar]
  22. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  24. Guan X, Liu C, Zhao J, Fang B, Zhang Y et al. Streptomyces maoxianensis sp. nov., a novel actinomycete isolated from soil in Maoxian, China. Antonie van Leeuwenhoek 2015; 107: 1119– 1126 [CrossRef] [PubMed]
    [Google Scholar]
  25. Waksman SA. The Actinomycetes. In Classification, Identification and Descriptions of Genera and Speciesvol. 2 Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  26. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57: 141– 145 [PubMed]
    [Google Scholar]
  27. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  28. Kelly KL. Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors published in US. 1964
  29. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013; 103: 399– 408 [CrossRef] [PubMed]
    [Google Scholar]
  30. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55: 1149– 1153 [CrossRef] [PubMed]
    [Google Scholar]
  31. Smibert RM, Krieg NR. Phenotypic characterisation. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  32. Gordon RE, Barnett DA, Handerhan JE, Pang C. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24: 54– 63 [CrossRef]
    [Google Scholar]
  33. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43: 805– 812 [CrossRef]
    [Google Scholar]
  34. Kämpfer P. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York, USA: Springer; 2012; pp. 1679– 1680 [Crossref]
    [Google Scholar]
  35. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30: 178– 182 [CrossRef] [PubMed]
    [Google Scholar]
  36. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy Special Publicationvol. 6 Arlington: Society of Industrial Microbiology; 1980; pp. 227– 291
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  38. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp. 267– 284
    [Google Scholar]
  39. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16: 176– 178
    [Google Scholar]
  40. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105: 307– 315 [CrossRef] [PubMed]
    [Google Scholar]
  41. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61: 1165– 1169 [CrossRef] [PubMed]
    [Google Scholar]
  42. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20: 435– 443 [CrossRef]
    [Google Scholar]
  43. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  44. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  45. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  46. Nikodinovic J, Barrow KD, Chuck JA. High yield preparation of genomic DNA from Streptomyces. Biotechniques 2003; 35: 932– 934 [PubMed]
    [Google Scholar]
  47. Weber T, Blin K, Duddela S, Krug D, Kim HU et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 2015; 43: W237– W243 [CrossRef] [PubMed]
    [Google Scholar]
  48. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  49. Zhang H, Wang H, Wang Y, Cui H, Xie Z et al. Genomic sequence-based discovery of novel angucyclinone antibiotics from marine Streptomyces sp. W007. FEMS Microbiol Lett 2012; 332: 105– 112 [CrossRef] [PubMed]
    [Google Scholar]
  50. Maruna M, Sturdikova M, Liptaj T, Godany A, Muckova M et al. Isolation, structure elucidation and biological activity of angucycline antibiotics from an epiphytic yew streptomycete. J Basic Microbiol 2010; 50: 135– 142 [CrossRef] [PubMed]
    [Google Scholar]
  51. Rickards RW, Wu JP. Fujianmycins A and B, new benz[a]anthraquinone antibiotics from a Streptomyces species. J Antibiot 1985; 38: 513– 515 [CrossRef] [PubMed]
    [Google Scholar]
  52. Kimura K, Kanou F, Koshino H, Uramoto M, Yoshihama M. SNA-8073-B, a new isotetracenone antibiotic inhibits prolyl endopeptidase. I. Fermentation, isolation and biological properties. J Antibiot 1997; 50: 291– 296 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002468
Loading
/content/journal/ijsem/10.1099/ijsem.0.002468
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error