1887

Abstract

A novel halophilic bacterium, strain GSS13, capable of growing at salinities of 8–28 % (w/v) NaCl (optimally at 24 %, w/v) was isolated from Yuncheng Saline Lake in China. GSS13 was Gram-stain-positive, strictly aerobic, rod-shaped, motile and a non-spore-former. Growth occurred at pH 5.5–8.5 (optimum pH 7.0) and at 10–45 °C (optimum 30 °C). On the basis of the results of 16S rRNA gene sequences phylogenetic analyses, GSS13 represents a member of the genus and is closely related to S7, CM1 and MSS4, with 16S rRNA gene sequence similarities of 98.7, 98.4 and 97.9 %, respectively. The results of DNA–DNA pairing studies revealed that GSS13 displayed 52, 43 and 48 % relatedness to S7, CM1 and MSS4, respectively. The polar lipids of GSS13 consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol unidentified glycolipids, an unidentified phospholipid and an unidentified lipid. The predominant isoprenoid quinone was MK-7, and the major fatty acids were anteiso-C (32.0 %) and anteiso C (26.4 %). The DNA G+C content of the type strain was 52.1 mol%. On the basis of phylogenetic, chemotaxonomic and phenotypic data, a novel species of the genus is proposed, with the name sp. nov. The type strain is GSS13 (=KCTC 33792=MCCC 1K00567).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002467
2018-01-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/113.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002467&mimeType=html&fmt=ahah

References

  1. Kosowski K, Schmidt M, Pukall R, Hause G, Kämpfer P et al. Bacillus pervagus sp. nov. and Bacillus andreesenii sp. nov., isolated from a composting reactor. Int J Syst Evol Microbiol 2014;64:88–94 [CrossRef][PubMed]
    [Google Scholar]
  2. Vishnuvardhan Reddy S, Thirumala M, Sasikala C, Venkata Ramana C. Salibacterium halotolerans gen. nov., sp. nov., a bacterium isolated from a salt pan, reclassification of Bacillus qingdaonensis as Salibacterium qingdaonense comb. nov. and Bacillus halochares as Salibacterium halochares comb. nov. Int J Syst Evol Microbiol 2015;65:4270–4275 [CrossRef][PubMed]
    [Google Scholar]
  3. Wang QF, Li W, Liu YL, Cao HH, Li Z et al. Bacillus qingdaonensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a crude sea-salt sample collected near Qingdao in eastern China. Int J Syst Evol Microbiol 2007;57:1143–1147 [CrossRef][PubMed]
    [Google Scholar]
  4. Pappa A, Sánchez-Porro C, Lazoura P, Kallimanis A, Perisynakis A et al. Bacillus halochares sp. nov., a halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol 2010;60:1432–1436 [CrossRef][PubMed]
    [Google Scholar]
  5. Vaz-Moreira I, Figueira V, Lopes AR, Lobo-da-Cunha A, Spröer C et al. Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant. Int J Syst Evol Microbiol 2012;62:71–77 [CrossRef][PubMed]
    [Google Scholar]
  6. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001;51:1639–1652 [CrossRef][PubMed]
    [Google Scholar]
  7. Doetsch RN. Determinative methods of light microscopy. In Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp.21–23
    [Google Scholar]
  8. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  9. Ohta H, Hattori T. Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 1983;49:429–446[PubMed]
    [Google Scholar]
  10. Pettersson B, Lembke F, Hammer P, Stackebrandt E, Priest FG. Bacillus sporothermodurans, a new species producing highly heat-resistant endospores. Int J Syst Bacteriol 1996;46:759–764 [CrossRef][PubMed]
    [Google Scholar]
  11. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  12. Dong X, Cai M. Manual of Systematic and Determinative Bacteriology Beijing: Science Press; 2001
    [Google Scholar]
  13. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  14. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high-performance liquid chromatography. J Appl Microbiol 1983;54:31–36 [CrossRef][PubMed]
    [Google Scholar]
  15. Kates M. Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids Amsterdam: Elsevier; 1986
    [Google Scholar]
  16. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: MIDI Inc; 1990
    [Google Scholar]
  17. Kates M. Techniques of Lipidology New York: Elsevier; 1972;[Crossref]
    [Google Scholar]
  18. Lane DJ. 16S/23S rRNA sequencing. In Stackenbrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: John Wiley & Sons; 1991
    [Google Scholar]
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  24. Seldin L, Dubnau D. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 1985;35:151–154 [CrossRef]
    [Google Scholar]
  25. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  26. Wayne L, Brenner D, Colwell R, Grimont P, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002467
Loading
/content/journal/ijsem/10.1099/ijsem.0.002467
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error