1887

Abstract

During the phylogenetic analysis of the genus , we found that an incorrect 16S rRNA gene sequence (accession number: D13727) was provided in the original description of NBRC 15098 and the wrong sequence has been adopted and used for a long time. It should be replaced by the new correct 16S rRNA gene sequence (accession number: MF618306). The new sequence shared the highest similarity (99.8 %) with that of DSM 24316. The average nucleotide identity (ANI) (96.87 %) and digital DNA–DNA hybridization (75.30 %) values based on the whole-genome sequences and almost the same phenotypic and chemotaxonomic characteristics of the two type strains revealed that should be a later heterotypic synonym of. However, the distinctions in the genome size, hydrolysis of aesculin, -glucosidase and particularly the fatty acid profiles strongly support that strain DSM 24316 should be considered to represent a novel subspecies of Two novel subspecies are therefore proposed, namely subsp. subsp. nov. (type strain E-1-A=NBRC 15098=JCM 10195=DSM 8831=LMG 17326) and subsp. subsp. nov. (type strain UI2=DSM 24316=CCM 7428=MTCC 8591).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002465
2017-12-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5279.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002465&mimeType=html&fmt=ahah

References

  1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  2. Jogler M, Chen H, Simon J, Rohde M, Busse HJ et al. Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. Int J Syst Evol Microbiol 2013; 63:1342–1349 [View Article][PubMed]
    [Google Scholar]
  3. Park JM, Park S, Jung YT, Kim H, Lee JS et al. Sphingorhabdus arenilitoris sp. nov., isolated from a coastal sand, and reclassification of Sphingopyxis rigui as Sphingorhabdus rigui comb. nov. and Sphingopyxis wooponensis as Sphingorhabdus wooponensis comb. nov. Int J Syst Evol Microbiol 2014; 64:2551–2557 [View Article][PubMed]
    [Google Scholar]
  4. Yang SZ, Xiong X, Feng GD, Li HP, Zhu HH. Reclassification of Sphingopyxis contaminans as Sphingorhabdus contaminans comb. nov. and emended description of the genus Sphingorhabdus. Int J Syst Evol Microbiol 2017 doi:10.1099/ijsem.0.002201 [View Article][PubMed]
    [Google Scholar]
  5. Chaudhary DK, Dahal RH, Kim J. Sphingopyxis solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:1820–1826 [View Article][PubMed]
    [Google Scholar]
  6. Takeuchi M, Kawai F, Shimada Y, Yokota A. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 1993; 16:227–238 [View Article]
    [Google Scholar]
  7. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  8. Sharma P, Verma M, Bala K, Nigam A, Lal R. Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 2010; 60:780–784 [View Article][PubMed]
    [Google Scholar]
  9. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  10. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  12. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed]
    [Google Scholar]
  13. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  14. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  15. Vaneechoutte M, de Baere T, Nemec A, Musílek M, van der Reijden TJ et al. Reclassification of Acinetobacter grimontii Carr et al. 2003 as a later synonym of Acinetobacter junii Bouvet and Grimont 1986. Int J Syst Evol Microbiol 2008; 58:937–940 [View Article][PubMed]
    [Google Scholar]
  16. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR et al. International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code Washington, DC: American Society for Microbiology; 1992
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002465
Loading
/content/journal/ijsem/10.1099/ijsem.0.002465
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error