gen. nov., sp. nov., a member of the family isolated from farmland soil Free

Abstract

Two strains of bacteria, designated J107-1 and J107-2, were isolated from farmland soil. Cells were aerobic, Gram-stain-negative, catalase- and oxidase-positive, non-motile, non-spore-forming, coccoid rod-shaped and yellow-pigmented. Flexirubin-type pigments were absent. Both strains hydrolysed casein and tyrosine. Strains could grow at pH 9.0 and at 42 °C. A phylogenetic analysis based on its 16S rRNA gene sequence revealed that strains J107-1 and J107-2 formed a lineage within the phylum that was distinct from various members of the family , including HME8881 (89.71 % sequence similarity), HME8442, GR20-13 (89.70 %), DSM 24787 (89.57 %), CGMCC 1.7271 (89.56 %) and THG-DT86 (89.52 %). The 16S rRNA gene similarities of other members of the family are less than 89.51 %. The predominant respiratory quinone was MK-7. The major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and an unidentified polar lipid. Major cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH and iso-C17 : 0. The DNA G+C content of strains ranged from 47.8 to 48.0 mol%. On the basis of phenotypic, genotypic, chemotaxonomic and phylogenetic analysis, strains J107-1 and J107-2 represent a novel genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is J107-1 (=KEMB 9005-549=KACC 19167=JCM 31921).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002452
2017-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5235.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002452&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Lodders N, Falsen E. Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 2011; 61:518–523 [View Article][PubMed]
    [Google Scholar]
  2. Sangkhobol V, Skerman VBD. Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Bacteriol 1981; 31:285–293 [View Article]
    [Google Scholar]
  3. Madhaiyan M, Poonguzhali S, Senthilkumar M, Pragatheswari D, Lee JS et al. Arachidicoccus rhizosphaerae gen. nov., sp. nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil. Int J Syst Evol Microbiol 2015; 65:578–586 [View Article][PubMed]
    [Google Scholar]
  4. Chen L, Wang D, Yang S, Wang G. Niastella vici sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2016; 66:1768–1772 [View Article][PubMed]
    [Google Scholar]
  5. Dahal RH, Kim J. Pedobacter humicola sp. nov., a member of the genus Pedobacter isolated from soil. Int J Syst Evol Microbiol 2016; 66:2205–2211 [View Article][PubMed]
    [Google Scholar]
  6. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article][PubMed]
    [Google Scholar]
  7. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  8. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  9. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  10. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  16. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P. (editor) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp. 21–33
    [Google Scholar]
  17. Reichenbach H. The order Cytophagales . In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, 2nd ed. vol. 4 New York: Springer; 1992 pp. 3631–3675 [Crossref]
    [Google Scholar]
  18. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 309–329
    [Google Scholar]
  19. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  20. Dahal RH, Kim J. Microvirga soli sp. nov., an alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 2017; 67:127–132 [View Article][PubMed]
    [Google Scholar]
  21. Chaudhary DK, Kim J. Arvibacter flaviflagrans gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:4347–4354 [View Article][PubMed]
    [Google Scholar]
  22. Vaughn RH, Mitchell NB, Levine M. The Voges-Proskauer and methyl red reactions in the coli-aerogenes group. J Am Water Works Assoc 1939; 31:993–1001
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354[PubMed]
    [Google Scholar]
  26. Komagata K, Suzuki K. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–203 [Crossref]
    [Google Scholar]
  27. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) Current protocols in molecular biology NY: John Wiley & Sons, Inc; 1997 pp. 241–245
    [Google Scholar]
  28. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  29. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to member filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 1989; 39:224–229
    [Google Scholar]
  30. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  31. Weon HY, Yoo SH, Kim YJ, Son JA, Kim BY et al. Chitinophaga niabensis sp. nov. and Chitinophaga niastensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59:1267–1271 [View Article][PubMed]
    [Google Scholar]
  32. Son HM, Kook M, Kim JH, Yi TH, T-h Y. Taibaiella koreensis sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2014; 64:1018–1023 [View Article][PubMed]
    [Google Scholar]
  33. Kämpfer P, Young CC, Sridhar KR, Arun AB, Lai WA et al. Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol 2006; 56:2223–2228 [View Article][PubMed]
    [Google Scholar]
  34. Kang H, Kim H, Joung Y, Jang TY, Joh K. Ferruginibacter paludis sp. nov., isolated from wetland freshwater, and emended descriptions of Ferruginibacter lapsinanis and Ferruginibacter alkalilentus . Int J Syst Evol Microbiol 2015; 65:2635–2639 [View Article][PubMed]
    [Google Scholar]
  35. Weon HY, Kim BY, Yoo SH, Lee SY, Kwon SW et al. Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov., novel members of the phylum Bacteroidetes, isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 2006; 56:1777–1782 [View Article][PubMed]
    [Google Scholar]
  36. Lee BI, Kang H, Kim H, Joung Y, Joh K. Ferruginibacter yonginensis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2014; 64:846–850 [View Article][PubMed]
    [Google Scholar]
  37. Kang H, Joh K, Joung Y, Jang TY, Kim H. Ferruginibacter paludis sp. nov., isolated from wetland freshwater, and emended descriptions of Ferruginibacter lapsinanis and Ferruginibacter alkalilentus . Int J Syst Evol Microbiol 2015; 65:2635–2639 [View Article]
    [Google Scholar]
  38. Yan ZF, Lin P, Wang YS, Gao W, Li CT et al. Niastellahibisci sp. nov., isolated from rhizosphere soil of mugunghwa, the Korean national flower. Int J Syst Evol Microbiol 2016; 66:5218–5222 [View Article][PubMed]
    [Google Scholar]
  39. Lv YY, Wang J, You J, Qiu LH. Chitinophaga dinghuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:4816–4822 [View Article][PubMed]
    [Google Scholar]
  40. Zhang L, Wang Y, Wei L, Wang Y, Shen X et al. Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus . Int J Syst Evol Microbiol 2013; 63:3769–3776 [View Article][PubMed]
    [Google Scholar]
  41. Kim MK, Kim TS, Joung Y, Han JH, Kim SB. Taibaiella soli sp. nov., isolated from pine forest soil. Int J Syst Evol Microbiol 2016; 66:3230–3234 [View Article][PubMed]
    [Google Scholar]
  42. Szabó I, Szoboszlay S, Táncsics A, Szerdahelyi SG, Szucs Á et al. Taibaiella coffeisoli sp. nov., isolated from the soil of a coffee plantation. Int J Syst Evol Microbiol 2016; 66:1627–1632 [View Article][PubMed]
    [Google Scholar]
  43. Siddiqi MZ, Aslam Z, Im WT, Wt I. Arachidicoccus ginsenosidivorans sp. nov., with ginsenoside-converting activity isolated from ginseng cultivating soil. Int J Syst Evol Microbiol 2017; 67:1005–1010 [View Article][PubMed]
    [Google Scholar]
  44. Hanada S, Tamaki H, Nakamura K, Kamagata Y. Crenotalea thermophila gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a hot spring. Int J Syst Evol Microbiol 2014; 64:1359–1364 [View Article][PubMed]
    [Google Scholar]
  45. Kim SJ, Ahn JH, Weon HY, Hong SB, Seok SJ et al. Flavitalea soli sp. nov. isolated from soil. Int J Syst Evol Microbiol 2015; 66:562–566 [View Article][PubMed]
    [Google Scholar]
  46. Lee JJ, Kang MS, Kim GS, Lee CS, Lim S et al. Flavisolibacter tropicus sp. nov., isolated from tropical soil. Int J Syst Evol Microbiol 2016; 66:3413–3419 [View Article][PubMed]
    [Google Scholar]
  47. Baik KS, Kim MS, Lee JH, Lee SS, Im WT, Wt I et al. Flavisolibacter rigui sp. nov., isolated from freshwater of an artificial reservoir and emended description of the genus Flavisolibacter . Int J Syst Evol Microbiol 2014; 64:4038–4042 [View Article][PubMed]
    [Google Scholar]
  48. Han JH, Baek K, Lee MH. Lacibacter nakdongensis sp. nov., isolated from river sediment. Int J Syst Evol Microbiol 2017; 67:352–356 [View Article][PubMed]
    [Google Scholar]
  49. Albuquerque L, Rainey FA, Nobre MF, da Costa MS. Hydrotalea sandarakina sp. nov., isolated from a hot spring runoff, and emended descriptions of the genus Hydrotalea and the species Hydrotalea flava. Int J Syst Evol Microbiol 2012; 62:1603–1608 [View Article][PubMed]
    [Google Scholar]
  50. Anders H, Dunfield PF, Lagutin K, Houghton KM, Power JF et al. Thermoflavifilum aggregans gen. nov., sp. nov., a Thermophilic and slightly halophilic filamentous bacterium from the phylum Bacteroidetes . Int J Syst Evol Microbiol 2014; 64:1264–1270 [View Article][PubMed]
    [Google Scholar]
  51. Albert RA, Waas NE, Pavlons SC, Pearson JL, Roecker J et al. Filimonas aurantiibacter sp. nov., an orange-pigmented bacterium isolated from lake water and emended description of the genus Filimonas . Int J Syst Evol Microbiol 2016; 66:4027–4032 [View Article][PubMed]
    [Google Scholar]
  52. Xie CH, Yokota A. Reclassification of [Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56:1117–1121 [View Article][PubMed]
    [Google Scholar]
  53. Han SI, Lee YR, Kim JO, Whang KS. Terrimonas rhizosphaerae sp. nov., isolated from ginseng rhizosphere soil. Int J Syst Evol Microbiol 2017; 67:391–395 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002452
Loading
/content/journal/ijsem/10.1099/ijsem.0.002452
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed