1887

Abstract

An actinomycete strain M4I47 was isolated from sediment from Megas Gialos, Syros, Greece. The results of phylogenetic analysis of the 16S rRNA gene sequence of M4I47 indicated that the highest similarity was with Actinoplanes atraurantiacus Y16 (98.9 %), Actinoplanes deccanensis IFO 13994 (98.8 %), Actinoplanes digitatis IFO 12512 (98.1 %) and Actinoplanes abujensis A4029 (98.0 %). The cell wall of the novel isolate contained meso-diaminopimelic acid and the whole-cell sugars were xylose, arabinose and glucose. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H2). The phospholipid profile comprised phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and an unknown phospholipid. The DNA G+C content was 71.5 mol%. Furthermore, a combination of DNA–DNA relatedness and some physiological and biochemical properties indicated that the novel strain could be readily distinguished from the most closely related species. On the basis of these phenotypic and genotypic data, M4I47 represents a novel species of the genus Actinoplanes , for which the name Actinoplanes sediminis sp. nov. is proposed. The type strain is M4I47 (=CCTCC AA 2016022=DSM 100965).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002451
2017-11-10
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/71.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002451&mimeType=html&fmt=ahah

References

  1. Couch JN. Actinoplanes, a new genus of the Actinomycetales. J Gen Microbiol 1950; 4: 280– 292 [Crossref]
    [Google Scholar]
  2. Goodfellow M, Stanton LJ, Simpson KE, Minnikin DE. Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol 1990; 136: 19– 36 [CrossRef]
    [Google Scholar]
  3. Tamura T, Hatano K. Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and 'Actinoplanes aurantiacus' to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol 2001; 51: 2119– 2125 [CrossRef] [PubMed]
    [Google Scholar]
  4. Zhang Y, Zhang J, Fan L, Pang H, Xin Y et al. Actinoplanes atraurantiacus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2012; 62: 2533– 2537 [CrossRef] [PubMed]
    [Google Scholar]
  5. Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58: 1– 26 [CrossRef] [PubMed]
    [Google Scholar]
  6. Debono M, Merkel KE, Molloy RM, Barnhart M, Presti E et al. Actaplanin, new glycopeptide antibiotics produced by Actinoplanes missouriensis. The isolation and preliminary chemical characterization of actaplanin. J Antibiot 1984; 37: 85– 95 [CrossRef] [PubMed]
    [Google Scholar]
  7. Bardone MR, Paternoster M, Coronelli C. Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov. sp. II. Extraction and chemical characterization. J Antibiot 1978; 31: 170– 177 [CrossRef] [PubMed]
    [Google Scholar]
  8. Coronelli C, Tamoni G, Lancini GC. Gardimycin, a new antibiotic from Actinoplanes. II. Isolation and preliminary characterization. J Antibiot 1976; 29: 507– 510 [CrossRef] [PubMed]
    [Google Scholar]
  9. Cavalleri B, Pagani H, Volpe G, Selva E, Parenti F. A-16686, a new antibiotic from Actinoplanes. I. Fermentation, isolation and preliminary physico-chemical characteristics. J Antibiot 1984; 37: 309– 317 [CrossRef] [PubMed]
    [Google Scholar]
  10. Nurkanto A, Lisdiyanti P, Hamada M, Ratnakomala S, Shibata C et al. Actinoplanes bogoriensis sp. nov., a novel actinomycete isolated from leaf litter. J Antibiot 2016; 69: 26– 30 [CrossRef] [PubMed]
    [Google Scholar]
  11. Ngaemthao W, Chunhametha S, Suriyachadkun C. Actinoplanes subglobosus sp. nov., isolated from mixed deciduous forest soil. Int J Syst Evol Microbiol 2016; 66: 4850– 4855 [CrossRef] [PubMed]
    [Google Scholar]
  12. Xie QY, Lin HP, Li L, Brown R, Goodfellow M et al. Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie van Leeuwenhoek 2012; 102: 1– 7 [CrossRef] [PubMed]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  14. Raper KB, Fennell DI. The Genus Aspergillus Baltimore: Williams and Wilkins; 1965; p. 686
    [Google Scholar]
  15. Ochi K. Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor. J Bacteriol 1987; 169: 3608– 3616 [CrossRef] [PubMed]
    [Google Scholar]
  16. Castiglione F, Lazzarini A, Carrano L, Corti E, Ciciliato I et al. Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 2008; 15: 22– 31 [CrossRef] [PubMed]
    [Google Scholar]
  17. Kelly KL. Inter-Society Color Council–National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  18. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol 1978; 5: 123– 127 [CrossRef]
    [Google Scholar]
  19. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  20. Williams ST, Cross T. Actinomycetes. In Booth C. (editor) Methods in Microbiologyvol. 4 London: Academic Press; 1971; pp. 295– 334
    [Google Scholar]
  21. Tresner HD, Danga F. Hydrogen sulfide production by Streptomyces as a criterion for species differentiation. J Bacteriol 1958; 76: 239– 244 [PubMed]
    [Google Scholar]
  22. Trujillo ME, Fernández-Molinero C, Velázquez E, Kroppenstedt RM, Schumann P et al. Micromonospora mirobrigensis sp. nov. Int J Syst Evol Microbiol 2005; 55: 877– 880 [CrossRef] [PubMed]
    [Google Scholar]
  23. Trujillo ME, Kroppenstedt RM, Schumann P, Martínez-Molina E. Kribbella lupini sp. nov., isolated from the roots of Lupinus angustifolius. Int J Syst Evol Microbiol 2006; 56: 407– 411 [CrossRef] [PubMed]
    [Google Scholar]
  24. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129: 1743– 1813 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21: 227– 251 [CrossRef] [PubMed]
    [Google Scholar]
  26. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer J. (editors) Actinomycete Taxonomy (Special Publication no. 6) Arlington VA: Society for Industrial Microbiology; 1980; pp. 227– 291
    [Google Scholar]
  27. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30: 131– 134 [CrossRef]
    [Google Scholar]
  28. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980; 188: 221– 233 [CrossRef]
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: Microbial ID; 1990
    [Google Scholar]
  31. Wang C, Xu XX, Qu Z, Wang HL, Lin HP et al. Micromonospora rhizosphaerae sp. nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 2011; 61: 320– 324 [CrossRef] [PubMed]
    [Google Scholar]
  32. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 1999; 49: 1761– 1767 [CrossRef] [PubMed]
    [Google Scholar]
  33. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  34. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  36. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  37. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  38. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  39. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  40. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  41. Pospiech A, Neumann B. A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 1995; 11: 217– 218 [CrossRef] [PubMed]
    [Google Scholar]
  42. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  43. Parenti F, Pagani H, Beretta G. Lipiarmycin, a new antibiotic from Actinoplanes. I. Description of the producer strain and fermentation studies. J Antibiot 1975; 28: 247– 252 [CrossRef] [PubMed]
    [Google Scholar]
  44. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  45. Lechevalier MP, de Bievre C, Lechevalier H. Chemotaxonomy of aerobic Actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5: 249– 260 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002451
Loading
/content/journal/ijsem/10.1099/ijsem.0.002451
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error