1887

Abstract

A Gram-stain-positive, endospore-forming, rod-shaped, aerobic bacterium, designated LPB0068, was isolated from a Pacific oyster (Crassostrea gigas) in Korea. This isolate was found to share the highest 16S rRNA gene sequence similarity with Paenibacillus macquariensis subsp. macquariensis DSM 2 (98.1 %) and Paenibacillus macquariensis subsp. defensor JCM 14954 (98.0 %). To establish the genomic relatedness of this isolate to its phylogenetic neighbours, its genome sequence and those of Paenibacillus antarcticus CECT 5836, P. macquariensis subsp. macquariensis DSM 2, P. macquariensis subsp. defensor JCM 14954, and Paenibacillus glacialis DSM 22343 were determined. The low average nucleotide identity and digital DNA–DNA hybridization values exhibited by LPB0068 in relation to the other strains in this analysis revealed that it is distinct from other Paenibacillus species. The genome of strain LPB0068 consists of one chromosome and three circular plasmids, and had a DNA G+C content of 40.0 mol%. The major respiratory quinone was menaquinone-7 and the diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid, one unidentified glycolipid, and two unidentified polar lipids. The major cellular fatty acids were anteiso-C15 : 0, C14 : 0, and C16 : 0. Based on genomic, phylogenetic, and phenotypic characteristics, this strain was clearly distinguished from other Paenibacillus species with validly published names and should therefore be classified as a novel species of the genus. The name Paenibacillus crassostreae sp. nov. is proposed, the type strain of which is LPB0068 (=KACC 18694=JCM 31183).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002444
2017-10-25
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/58.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002444&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64: 253– 260 [PubMed] [Crossref]
    [Google Scholar]
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47: 289– 298 [CrossRef] [PubMed]
    [Google Scholar]
  3. Behrendt U, Schumann P, Stieglmeier M, Pukall R, Augustin J et al. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity–description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst Appl Microbiol 2010; 33: 328– 336 [CrossRef] [PubMed]
    [Google Scholar]
  4. Judicial Commission of the International Committee for Systematics of Prokaryotes The type species of the genus Paenibacillus Ash et al. 1994 is Paenibacillus polymyxa. Opinion 77. Int J Syst Evol Microbiol 2005; 55: 513 [CrossRef] [PubMed]
    [Google Scholar]
  5. Montes MJ, Mercadé E, Bozal N, Guinea J. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 2004; 54: 1521– 1526 [CrossRef] [PubMed]
    [Google Scholar]
  6. Park MJ, Kim HB, An DS, Yang HC, Oh ST et al. Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 2007; 57: 146– 150 [CrossRef] [PubMed]
    [Google Scholar]
  7. Lee J, Shin NR, Jung MJ, Roh SW, Kim MS et al. Paenibacillus oceanisediminis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 2013; 63: 428– 434 [CrossRef] [PubMed]
    [Google Scholar]
  8. Zhang L, Gao JS, Zhang S, Ali Sheirdil R, Wang XC et al. Paenibacillus rhizoryzae sp. nov., isolated from rice rhizosphere. Int J Syst Evol Microbiol 2015; 65: 3053– 3059 [CrossRef] [PubMed]
    [Google Scholar]
  9. Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J et al. Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 2004; 54: 885– 891 [CrossRef] [PubMed]
    [Google Scholar]
  10. Roux V, Raoult D. Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 2004; 54: 1049– 1054 [CrossRef] [PubMed]
    [Google Scholar]
  11. Roux V, Fenner L, Raoult D. Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int J Syst Evol Microbiol 2008; 58: 682– 687 [CrossRef] [PubMed]
    [Google Scholar]
  12. Hoshino T, Nakabayashi T, Hirota K, Matsuno T, Koiwa R et al. Paenibacillus macquariensis subsp. defensor subsp. nov., isolated from boreal soil. Int J Syst Evol Microbiol 2009; 59: 2074– 2079 [CrossRef] [PubMed]
    [Google Scholar]
  13. Kishore KH, Begum Z, Pathan AA, Shivaji S. Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the Himalayas, India. Int J Syst Evol Microbiol 2010; 60: 1909– 1913 [CrossRef] [PubMed]
    [Google Scholar]
  14. Shin SK, Kim E, Choi S, Yi H. Cochleicola gelatinilyticus gen. nov., sp. nov., isolated from a Marine Gastropod, Reichia luteostoma. J Microbiol Biotechnol 2016; 26: 1439– 1445 [CrossRef] [PubMed]
    [Google Scholar]
  15. Yoon SH, Sm H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [Crossref]
    [Google Scholar]
  16. Jeon YS, Lee K, Park SC, Kim BS, Cho YJ et al. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol 2014; 64: 689– 691 [CrossRef] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  19. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolismvol. 3 New York, NY: Academic Press; 1969; pp. 21– 132 [Crossref]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  21. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61: 539– 542 [CrossRef] [PubMed]
    [Google Scholar]
  22. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMICS 2008; 12: 137– 141 [CrossRef] [PubMed]
    [Google Scholar]
  23. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2: 117– 134 [CrossRef] [PubMed]
    [Google Scholar]
  24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  25. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102: 2567– 2572 [CrossRef] [PubMed]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  27. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59: 2114– 2121 [CrossRef] [PubMed]
    [Google Scholar]
  28. Hayama M, Oana K, Kozakai T, Umeda S, Fujimoto J et al. Proposal of a simplified technique for staining bacterial spores without applying heat–successful modification of Moeller's method. Eur J Med Res 2007; 12: 356– 359 [PubMed]
    [Google Scholar]
  29. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61: 3756– 3758 [PubMed]
    [Google Scholar]
  30. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 6027– 6655
    [Google Scholar]
  31. da Costa MS, Albuquerque L, Nobre MF, Wait R. The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. Methods Microbiol 2011; 38: 197– 206 [CrossRef]
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  33. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38: 101– 129 [Crossref]
    [Google Scholar]
  34. da Costa MS, Albuquerque L, Nobre MF, Wait R. The identification of polar lipids in prokaryotes. Methods Microbiol 2011; 38: 165– 181 [Crossref]
    [Google Scholar]
  35. Marshall BJ, Ohye DF. Bacillus macquariensis n.sp., a psychrotrophic bacterium from sub-antarctic soil. J Gen Microbiol 1966; 44: 41– 46 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002444
Loading
/content/journal/ijsem/10.1099/ijsem.0.002444
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error