1887

Abstract

A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterium, designated 15J8-5, was isolated from beach soil on Jeju Island, Republic of Korea. The isolate grew at 10–37 °C (optimal 25 °C), pH 6–8 (optimal pH 7) and in the presence of 0–1 % (w/v) NaCl. The results of comparative 16S rRNA gene sequence analysis indicated that strain 15J8-5 represented a member of the family Cytophagaceae , phylum Bacteroidetes and was most closely related to Spirosoma knui 15J8-12 (93.1 % similarity), Spirosoma spitsbergense SPM-9 (93.1 %) and Spirosoma endophyticum EX36 (93.1 %). The G+C content of the genomic DNA of the novel strain was 48.0 mol%. The isolate contained menaquinone MK-7 as the predominant respiratory quinone, phosphatidylethanolamine as the major polar lipid, and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c; 32.8 %), C16 : 1 ω5c (24.8 %) and C16 : 0 (11.7 %) as the major fatty acids, which supported the affiliation of strain 15J8-5 to the genus Spirosoma . The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J8-5 from members of the genus Spirosoma . Based on its phenotypic properties and phylogenetic distinctiveness, strain 15J8-5 represents a novel species of the genus Spirosoma , for which the name Spirosoma koreense sp. nov. is proposed. The type strain is 15J8-5 (=KCTC 52027=JCM 31992).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002440
2017-10-23
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5198.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002440&mimeType=html&fmt=ahah

References

  1. McBride MJ, Liu W, Lu X, Zhu Y, Zhang W et al. The family Cytophagaceae. In Rosenberg E, Stackebrandt E, Thompson FL, Lory S, DeLong EF. et al. (editors) The Prokaryotes, 4 ed. Berlin, Heidelberg: Springer-Verlag; 2014; pp. 577– 593
    [Google Scholar]
  2. Larkin JM, Borrall R. Family I. Spirosomaceae Larkin and Borrall 1978, 595AL. In Krieg NR, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 1 Baltimore: Williams & Wilkins; 1984; pp. 125– 126
    [Google Scholar]
  3. Finster KW, Herbert RA, Lomstein BA. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2009; 59: 839– 844 [CrossRef] [PubMed]
    [Google Scholar]
  4. Ahn JH, Weon HY, Kim SJ, Hong SB, Seok SJ et al. Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2014; 64: 3230– 3234 [CrossRef] [PubMed]
    [Google Scholar]
  5. Lee JJ, Park SJ, Lee YH, Lee SY, Park S et al. Spirosoma luteolum sp. nov. isolated from water. J Microbiol 2017; 55: 247– 252 [CrossRef] [PubMed]
    [Google Scholar]
  6. Oren A, Garrity GM. List of novel names and novel combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 67: 2075– 2078 [CrossRef] [PubMed]
    [Google Scholar]
  7. Joo ES, Kim EB, Jeon SH, Srinivasan S, Kim MK. Spirosoma swuense sp. nov., isolated from wet soil. Int J Syst Evol Microbiol 2017; 67: 532– 536 [CrossRef] [PubMed]
    [Google Scholar]
  8. Lee JJ, Lee YH, Park SJ, Lee SY, Kim BO et al. Spirosoma knui sp. nov., a radiation-resistant bacterium isolated from the Han River. Int J Syst Evol Microbiol 2017; 67: 1359– 1365 [CrossRef] [PubMed]
    [Google Scholar]
  9. Li Y, Ai MJ, Sun Y, Zhang YQ, Zhang JQ. Spirosoma lacussanchae sp. nov., a phosphate-solubilizing bacterium isolated from a freshwater reservoir. Int J Syst Evol Microbiol 2017; 67: 3144– 3149 [CrossRef] [PubMed]
    [Google Scholar]
  10. Lee JJ, Lee YH, Park SJ, Lim S, Jeong SW et al. Spirosoma fluminis sp. nov., a gamma-radiation resistant bacterium isolated from sediment of the han river in South Korea. Curr Microbiol 2016; 73: 689– 695 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim DU, Lee H, Kim SG, Ahn JH, Yoon Park S et al. Spirosoma aerolatum sp. nov., isolated from a motor car air conditioning system. Int J Syst Evol Microbiol 2015; 65: 4003– 4007 [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim SJ, Ahn JH, Weon HY, Hong SB, Seok SJ et al. Spirosoma aerophilum sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2016; 66: 2342– 2346 [CrossRef] [PubMed]
    [Google Scholar]
  13. Baik KS, Kim MS, Park SC, Lee DW, Lee SD et al. Spirosoma rigui sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2007; 57: 2870– 2873 [CrossRef] [PubMed]
    [Google Scholar]
  14. Hatayama K, Kuno T. Spirosoma fluviale sp. nov., isolated from river water. Int J Syst Evol Microbiol 2015; 65: 3447– 3450 [CrossRef] [PubMed]
    [Google Scholar]
  15. Ten LN, Xu JL, Jin FX, Im WT, Oh HM et al. Spirosoma panaciterrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59: 331– 335 [CrossRef] [PubMed]
    [Google Scholar]
  16. Yang SS, Tang K, Zhang X, Wang J, Wang X et al. Spirosoma soli sp. nov., isolated from biological soil crusts. Int J Syst Evol Microbiol 2016; 66: 5568– 5574 [CrossRef] [PubMed]
    [Google Scholar]
  17. Fries J, Pfeiffer S, Kuffner M, Sessitsch A. Spirosoma endophyticum sp. nov., isolated from Zn- and Cd-accumulating Salix caprea. Int J Syst Evol Microbiol 2013; 63: 4586– 4590 [CrossRef] [PubMed]
    [Google Scholar]
  18. Chang X, Jiang F, Wang T, Kan W, Qu Z et al. Spirosoma arcticum sp. nov., isolated from high Arctic glacial till. Int J Syst Evol Microbiol 2014; 64: 2233– 2237 [CrossRef] [PubMed]
    [Google Scholar]
  19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  22. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  27. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  28. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16s rrna sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  29. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  30. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31: 575– 580 [PubMed]
    [Google Scholar]
  31. Agarwal S, Hunnicutt DW, Mcbride MJ. Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci USA 1997; 94: 12139– 12144 [CrossRef] [PubMed]
    [Google Scholar]
  32. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 9th ed. San Francisco, USA: Benjamin Cummings; 2010
    [Google Scholar]
  33. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 1998; 48: 223– 235 [CrossRef] [PubMed]
    [Google Scholar]
  34. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45: 493– 496 [PubMed]
    [Google Scholar]
  35. Liu QM, Ten LN, Yu HS, Jin FX, Im WT et al. Emticicia ginsengisoli sp. nov., a species of the family 'Flexibacteraceae' isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2008; 58: 1100– 1105 [CrossRef] [PubMed]
    [Google Scholar]
  36. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) Current Protocols in Molecular Biology New York: Jonh Wiley & Sons, Inc; 1997; pp. 2.4.1– 2.4.2
    [Google Scholar]
  37. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C Content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Netwark, DE: MIDI Inc; 1990
    [Google Scholar]
  39. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  40. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 205 [Crossref]
    [Google Scholar]
  41. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42: 457– 469 [CrossRef]
    [Google Scholar]
  42. Lail K, Sikorski J, Saunders E, Lapidus A, Glavina del Rio T et al. Complete genome sequence of Spirosoma linguale type strain (1T). Stand Genomic Sci 2010; 2: 176– 184 [CrossRef] [PubMed]
    [Google Scholar]
  43. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63: 4386– 4395 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002440
Loading
/content/journal/ijsem/10.1099/ijsem.0.002440
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error