1887

Abstract

A Gram-negative, aerobic, yellow pigmented, non-flagellated, non-gliding, rod-shaped bacterial strain, designated SM1355, was isolated from Antarctic intertidal sediment collected near the Chinese Antarctic Great Wall Station. The strain grew at 4–35 °C and with 0.5–7.0 % (w/v) NaCl. It hydrolysed aesculin but didn’t reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1355 formed a distinct phylogenetic lineage within the family Flavobacteriaceae , sharing the highest 16S rRNA gene sequence similarity with Flaviramulus ichthyoenteri (96.3 %) and fairly high sequence similarities (95.0–96.0 %) with over 20 recognized species in eight genera of the family Flavobacteriaceae . The predominant fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C15 : 1 G. The major polar lipids were phosphatidylethanolamine and one unidentified lipid. The genomic DNA G+C content of strain SM1355 was 36.2 mol%. Based on the results of the polyphasic characterization for strain SM1355, it is identified as the representative of a novel species in a new genus of the family Flavobacteriaceae , for which the name Changchengzhania lutea gen. nov., sp. nov. is proposed. The type strain of Changchengzhania lutea is SM1355 (=JCM 30336=CCTCC AB 2014246).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002439
2017-10-25
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5187.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002439&mimeType=html&fmt=ahah

References

  1. Jooste PJ. The taxonomy and significance of Flavobacterium–Cytophaga strains from daily sources. PhD Thesis University of the Orange Free State; 1985
    [Google Scholar]
  2. Bernardet J-F, Nakagawa Y. An introduction to the family Flavobacteriaceae. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed.vol. 7 New York, NY: Springer; 2006; pp. 455– 480
    [Google Scholar]
  3. Bernardet J-F. Family I. Flavobacteriaceae Reichenbach 1992b, 327VP (Effective publication: Reichenbach 1989b, 2013.) emend. Bernardet, Segers, Vancanneyt, Berthe, Kersters, and Vandamme 1996, 145 emend. Bernardet, Nakagawa and Holmes 2002, 1057. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes New York, NY: Springer; 2010; pp. 106– 111
    [Google Scholar]
  4. McBride MJ. The family Flavobacteriaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes-Other Major Lineages of Bacteria and The Archaea Berlin, Heidelberg: Springer Berlin Heidelberg; 2014; pp. 643– 676
    [Google Scholar]
  5. Bowman JP, Mccammon SA, Brown JL, Nichols PD, Mcmeekin TA. Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 1997; 47: 670– 677 [CrossRef] [PubMed]
    [Google Scholar]
  6. Bowman JP, Mccammon SA, Lewis T, Skerratt JH, Brown JL et al. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 1998; 144: 1601– 1609 [CrossRef] [PubMed]
    [Google Scholar]
  7. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 1998; 48: 223– 235 [CrossRef] [PubMed]
    [Google Scholar]
  8. Bowman JP, Nichols DS. Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats. Int J Syst Evol Microbiol 2002; 52: 1533– 1541 [CrossRef] [PubMed]
    [Google Scholar]
  9. Bowman JP, Nichols DS. Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 2005; 55: 1471– 1486 [CrossRef] [PubMed]
    [Google Scholar]
  10. van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Gillisia limnaea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from a microbial mat in Lake Fryxell, Antarctica. Int J Syst Evol Microbiol 2004; 54: 445– 448 [CrossRef] [PubMed]
    [Google Scholar]
  11. Yang SJ, Oh HM, Chung S, Cho JC. Antarcticimonas flava gen. nov., sp. nov., isolated from Antarctic coastal seawater. J Microbiol 2009; 47: 517– 523 [CrossRef] [PubMed]
    [Google Scholar]
  12. Yu Y, Li HR, Zeng YX, Sun K, Chen B. Pricia antarctica gen. nov., sp. nov., a member of the family Flavobacteriaceae, isolated from Antarctic intertidal sediment. Int J Syst Evol Microbiol 2012; 62: 2218– 2223 [CrossRef] [PubMed]
    [Google Scholar]
  13. Liu C, Zhang XY, Wen XR, Shi M, Chen XL et al. Arcticiflavibacter luteus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from intertidal sand. Int J Syst Evol Microbiol 2016; 66: 144– 149 [CrossRef] [PubMed]
    [Google Scholar]
  14. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp. 115– 175
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  16. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  23. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  24. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48: 459– 470 [CrossRef]
    [Google Scholar]
  25. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
  26. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3: 208– IN1 [CrossRef]
    [Google Scholar]
  27. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  28. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 21– 41
    [Google Scholar]
  29. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  30. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  31. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 2006; 56: 1293– 1304 [CrossRef] [PubMed]
    [Google Scholar]
  32. Zhang Y, Tang K, Shi X, Zhang XH. Flaviramulus ichthyoenteri sp. nov., an N-acylhomoserine lactone-degrading bacterium isolated from the intestine of a flounder (Paralichthys olivaceus), and emended descriptions of the genus Flaviramulus and Flaviramulus basaltis. Int J Syst Evol Microbiol 2013; 63: 4477– 4483 [CrossRef] [PubMed]
    [Google Scholar]
  33. Park SC, Hwang YM, Lee JH, Baik KS, Seong CN. Algibacter agarivorans sp. nov. and Algibacter agarilyticus sp. nov., isolated from seawater, reclassification of Marinivirga aestuarii as Algibacter aestuarii comb. nov. and emended description of the genus Algibacter. Int J Syst Evol Microbiol 2013; 63: 3494– 3500 [CrossRef] [PubMed]
    [Google Scholar]
  34. Jung SY, Kang SJ, Lee MH, Lee SY, Oh TK et al. Gaetbulibacter saemankumensis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 2005; 55: 1845– 1849 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002439
Loading
/content/journal/ijsem/10.1099/ijsem.0.002439
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error