1887

Abstract

Two yellow-pigmented isolates, S5-249 and L9-754, originating from surface-sterilized plant tissues of Jatropha curcas L. (Jatropha) cultivars were characterized using a polyphasic taxonomic approach. Strains S5-249 and L9-754 had 16S rRNA genes sharing 94.2 % sequence similarity with each other and 91.6–97.2 % sequence similarity with those of other species in the genus Sphingomonas , suggesting that they represent two potentially novel species. The 16S rRNA gene sequences of strains S5-249 and L9-754 shared the highest similarity to that of Sphingomonas sanguinis NBRC 13937 (96.1 and 97.2 %, respectively). The genomic DNA G+C contents of strains S5-249 and L9-754 were 66.9 and 68.5 mol%, respectively. The respiratory quinone was determined to be Q-10, and the major polyamine was homospermidine. Strains S5-249 and L9-754 contained summed feature 7 (comprising C18 : 1ω7c, C18 : 1ω9t and/or C18 : 1ω12t), C16 : 1, C14 : 0 2-OH and summed feature 4 (C16 : 1ω7t, iso-C15 : 0 2-OH and C16 : 1ω7c) as the major cellular fatty acids. The predominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and sphingoglycolipid. The average nucleotide identity (ANI) values between S. sanguinis NBRC 13937 and the two type strains (S5-249 and L9-754) were 72.31 and 77.73 %, respectively. Digital DNA–DNA hybridization (dDDH) studies between the novel strains (S5-249 and L9-754) and other species of the genus Sphingomonas were well below the thresholds used to discriminate between bacterial species. The results of dDDH and physiological tests allowed genotypic and phenotypic differentiation of the strains from each other as well as from the species of the genus Sphingomonas with validly published names. These data strongly support the classification of the strains as representatives of novel species, for which we propose the names Sphingomonas jatrophae sp. nov. (type strain S5-249=DSM 27345=KACC 17593) and Sphingomonas carotinifaciens sp. nov. (type strain L9-754=DSM 27347=KACC 17595).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002434
2017-10-31
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5150.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002434&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002; 52: 1485– 1496 [CrossRef] [PubMed]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51: 1405– 1417 [CrossRef] [PubMed]
    [Google Scholar]
  3. Holmes B, Owen RJ, Evans A, Malnick H, Willcox WR. Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int J Syst Bacteriol 1977; 27: 133– 146 [CrossRef]
    [Google Scholar]
  4. Karlson U, Rojo F, van Elsas JD, Moore E. Genetic and serological evidence for the recognition of four pentachlorophenol-degrading bacterial strains as a species of the genus Sphingomonas. Syst Appl Microbiol 1995; 18: 539– 548 [CrossRef]
    [Google Scholar]
  5. Kim E, Aversano PJ, Romine MF, Schneider RP, Zylstra GJ. Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface Sphingomonas strains. Appl Environ Microbiol 1996; 62: 1467– 1470 [PubMed]
    [Google Scholar]
  6. Shi T, Fredrickson JK, Balkwill DL. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface. J Ind Microbiol Biotechnol 2001; 26: 283– 289 [CrossRef] [PubMed]
    [Google Scholar]
  7. Zylstra GJ, Kim E. Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 1997; 19: 408– 414 [CrossRef] [PubMed]
    [Google Scholar]
  8. Balkwill DL, Drake GR, Reeves RH, Fredrickson JK, White DC et al. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 1997; 47: 191– 201 [CrossRef] [PubMed]
    [Google Scholar]
  9. Baraniecki CA, Aislabie J, Foght JM. Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 2002; 43: 44– 54 [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim H, Nishiyama M, Kunito T, Senoo K, Kawahara K et al. High population of Sphingomonas species on plant surface. J Appl Microbiol 1998; 85: 731– 736 [CrossRef]
    [Google Scholar]
  11. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003; 53: 1253– 1260 [CrossRef] [PubMed]
    [Google Scholar]
  12. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 2009; 106: 16428– 16433 [CrossRef] [PubMed]
    [Google Scholar]
  13. Innerebner G, Knief C, Vorholt JA. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 2011; 77: 3202– 3210 [CrossRef] [PubMed]
    [Google Scholar]
  14. Andrews JH. Biological control in the phyllosphere. Annu Rev Phytopathol 1992; 30: 603– 635 [CrossRef] [PubMed]
    [Google Scholar]
  15. Jacobsen B. Biological control of plant diseases by phyllosphere applied biological control agents. Microbial Ecology of Aerial Plant Surfaces 2006; pp. 133– 147 [Crossref]
    [Google Scholar]
  16. Divakara BN, Upadhyaya HD, Wani SP, Gowda CLL. Biology and genetic improvement of Jatropha curcas L.: A review. Appl Energy 2010; 87: 732– 742 [CrossRef]
    [Google Scholar]
  17. Madhaiyan M, Hu CJ, Jegan Roy J, Kim SJ, Weon HY et al. Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63: 1702– 1708 [CrossRef] [PubMed]
    [Google Scholar]
  18. Madhaiyan M, Jin TY, Roy JJ, Kim SJ, Weon HY et al. Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63: 2477– 2483 [CrossRef] [PubMed]
    [Google Scholar]
  19. Madhaiyan M, Hu CJ, Kim SJ, Weon HY, Kwon SW et al. Jatrophihabitans endophyticus gen. nov., sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63: 1241– 1248 [CrossRef] [PubMed]
    [Google Scholar]
  20. Madhaiyan M, Peng N, Te NS, Hsin C, Lin C et al. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnol Biofuels 2013; 6: 140 [CrossRef] [PubMed]
    [Google Scholar]
  21. Madhaiyan M, Alex TH, Ngoh ST, Prithiviraj B, Ji L. Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas. Biotechnol Biofuels 2015; 8: 222 [CrossRef] [PubMed]
    [Google Scholar]
  22. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B et al. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 2001; 183: 2634– 2645 [CrossRef] [PubMed]
    [Google Scholar]
  23. Breznak JA, Costilow RN. Physicochemical factors in growth. Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007; pp. 309– 3329
    [Google Scholar]
  24. Kim BC, Poo H, Lee KH, Kim MN, Kwon OY et al. Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. Int J Syst Evol Microbiol 2012; 62: 55– 60 [CrossRef] [PubMed]
    [Google Scholar]
  25. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P et al. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 1985; 162: 328– 334 [PubMed]
    [Google Scholar]
  26. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001; Chapter 2: 2.4. 1– 2.4.2 [CrossRef] [PubMed]
    [Google Scholar]
  27. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89: 5685– 5689 [CrossRef] [PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  32. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  34. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  35. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31: 241– 250 [CrossRef] [PubMed]
    [Google Scholar]
  36. Munoz R, Yarza P, Ludwig W, Euzéby J, Amann R et al. Release LTPs104 of the All-Species Living Tree. Syst Appl Microbiol 2011; 34: 169– 170 [CrossRef] [PubMed]
    [Google Scholar]
  37. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  38. Bennett S. Solexa Ltd. Pharmacogenomics 2004; 5: 433– 438 [CrossRef] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  41. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead-zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica. Int J Syst Evol Microbiol 2017; 67: 2160– 2165 [CrossRef] [PubMed]
    [Google Scholar]
  42. Denner EB, Paukner S, Kämpfer P, Moore ER, Abraham WR et al. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 2001; 51: 827– 841 [CrossRef] [PubMed]
    [Google Scholar]
  43. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  44. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11: 1– 8 [CrossRef]
    [Google Scholar]
  45. Busse HJ, Kämpfer P, Denner EB. Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 1999; 23: 242– 251 [CrossRef] [PubMed]
    [Google Scholar]
  46. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  47. Kämpfer P, Meurer U, Esser M, Hirsch T, Busse HJ. Sphingomonas pseudosanguinis sp. nov., isolated from the water reservoir of an air humidifier. Int J Syst Evol Microbiol 2007; 57: 1342– 1345 [CrossRef] [PubMed]
    [Google Scholar]
  48. Takeuchi M, Kawai F, Shimada Y, Yokota A. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 1993; 16: 227– 238 [CrossRef]
    [Google Scholar]
  49. Rivas R, Abril A, Trujillo ME, Velázquez E. Sphingomonas phyllosphaerae sp. nov., from the phyllosphere of Acacia caven in Argentina. Int J Syst Evol Microbiol 2004; 54: 2147– 2150 [CrossRef] [PubMed]
    [Google Scholar]
  50. Choi TE, Liu QM, Yang JE, Sun S, Kim SY et al. Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 2010; 48: 760– 766 [CrossRef] [PubMed]
    [Google Scholar]
  51. Huang HY, Li J, Zhao GZ, Zhu WY, Yang LL et al. Sphingomonas endophytica sp. nov., isolated from Artemisia annua L. Int J Syst Evol Microbiol 2012; 62: 1576– 1580 [CrossRef] [PubMed]
    [Google Scholar]
  52. Chen H, Jogler M, Tindall BJ, Klenk HP, Rohde M et al. Sphingomonas starnbergensis sp. nov., isolated from a prealpine freshwater lake. Int J Syst Evol Microbiol 2013; 63: 1017– 1023 [CrossRef] [PubMed]
    [Google Scholar]
  53. Choi GM, Jo JH, Kang MS, Kim MS, Lee SY et al. Sphingomonas aquatica sp. nov., isolated from tap water. Int J Syst Evol Microbiol 2017; 67: 845– 850 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002434
Loading
/content/journal/ijsem/10.1099/ijsem.0.002434
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error