1887

Abstract

A Gram-stain-negative, facultative anaerobic and oligotrophic, rod-shaped, and motile with single polar flagellum bacterial strain, designed M11-4 was isolated from mangrove sediment in Yunxiao Mangrove National Nature Reserve, China. Growth was observed at temperatures from 10 to 40 °C (optimum 30 °C), at salinities from 0.5 to 6 % (optimum 2–3 %), and at pH from 5 to 8 (optimum 6). Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain M11-4 shared highest sequence similarity with the genus Marinobacter (92.5–95.0 %) and represented a distinct phylogenetic lineage in the family Alteromonadaceae . The G+C content of the genomic DNA was 58.2 mol%. The dominant fatty acids were C16 : 0, C16 : 0 N-alcohol, summed feature 9 (comprising iso-C17 : 1ω9c and/or C16 : 0 10-methyl) and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). The predominant respiratory quinone was ubiquinone-9 and the major polar lipids were diphosphatidylglycerol; phosphatidylethanolamine; phosphatidylglycerol and an unidentified aminophospholipid. According to its morphology, physiology, fatty acid composition and 16S rRNA gene sequence analysis, the strain M11-4 should be assigned as a novel species of a novel genus for which the name Mangrovitalea sediminis gen. nov., sp. nov. is proposed. The type strain of Mangrovitalea sediminis is M11-4 (=MCCC 1K03312=JCM 32104).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002433
2017-10-18
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5172.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002433&mimeType=html&fmt=ahah

References

  1. Ivanova EP, Mikhaĭlov VV. A new family of Alteromonadaceae fam. nov., including the marine proteobacteria species Alteromonas, Pseudoalteromonas, Idiomarina and Colwellia. Microbiology 2001;70:15–23[PubMed]
    [Google Scholar]
  2. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004;54:1773–1788 [CrossRef][PubMed]
    [Google Scholar]
  3. Spring S, Scheuner C, Göker M, Klenk HP. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015;6:281 [CrossRef][PubMed]
    [Google Scholar]
  4. Satomi M, Fujii T. The family Oceanospirillaceae. In: The Prokaryotes Springer; 2014; pp.491–527
    [Google Scholar]
  5. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992;42:568–576 [CrossRef][PubMed]
    [Google Scholar]
  6. López-Pérez M, Rodriguez-Valera F. The family Alteromonadaceae. In: The Prokaryotes Springer; 2014; pp.69–92
    [Google Scholar]
  7. Munoz R, Yarza P, Ludwig W, Euzéby J, Amann R et al. Release LTPs104 of the All-Species Living Tree. Syst Appl Microbiol 2011;34:169–170 [CrossRef][PubMed]
    [Google Scholar]
  8. Verma A, Mual P, Mayilraj S, Krishnamurthi S. Tamilnaduibacter salinus gen. nov., sp. nov., a halotolerant gammaproteobacterium within the family Alteromonadaceae, isolated from a salt pan in Tamilnadu, India. Int J Syst Evol Microbiol 2015;65:3248–3255 [CrossRef][PubMed]
    [Google Scholar]
  9. Maturrano L, Valens-Vadell M, Rosselló-Mora R, Antón J. Salicola marasensis gen. nov., sp. nov., an extremely halophilic bacterium isolated from the Maras solar salterns in Peru. Int J Syst Evol Microbiol 2006;56:1685–1691 [CrossRef][PubMed]
    [Google Scholar]
  10. Sorokin DY, Tourova TP, Galinski EA, Belloch C, Tindall BJ. Extremely halophilic denitrifying bacteria from hypersaline inland lakes, Halovibrio denitrificans sp. nov. and Halospina denitrificans gen. nov., sp. nov., and evidence that the genus name Halovibrio Fendrich 1989 with the type species Halovibrio variabilis should be associated with DSM 3050. Int J Syst Evol Microbiol 2006;56:379–388 [CrossRef][PubMed]
    [Google Scholar]
  11. Lei X, Li Y, Chen Z, Zheng W, Lai Q et al. Altererythrobacter xiamenensis sp. nov., an algicidal bacterium isolated from red tide seawater. Int J Syst Evol Microbiol 2014;64:631–637 [CrossRef][PubMed]
    [Google Scholar]
  12. Yoon SH, Sm H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2016;67:1613–1617
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  16. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. 1992;9945
  17. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526[PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  19. Yang Y, Zhang G, Sun Z, Cheung MK, Huang C. Altererythrobacter oceanensis sp. nov., isolated from the western Pacific. Antonie van Leeuwenhoek 2014;106:1191–1198 [CrossRef][PubMed]
    [Google Scholar]
  20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  21. Kates M. Techniques of Lipidology, 2nd ed. rev. Amsterdam: Elsevier; 1986
    [Google Scholar]
  22. Collins M. Isoprenoid quinone analysis in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–287
    [Google Scholar]
  23. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998;19:554–568 [CrossRef][PubMed]
    [Google Scholar]
  24. Shieh WY, Jean WD, Lin YT, Tseng M. Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 2003;49:244–252 [CrossRef][PubMed]
    [Google Scholar]
  25. Grimaud R, Ghiglione JF, Cagnon C, Lauga B, Vaysse PJ et al. Genome sequence of the marine bacterium Marinobacter hydrocarbonoclasticus SP17, which forms biofilms on hydrophobic organic compounds. J Bacteriol 2012;194:3539–3540 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002433
Loading
/content/journal/ijsem/10.1099/ijsem.0.002433
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error