1887

Abstract

A novel Gram-stain-positive, strictly aerobic, non-endospore-forming bacterium, designated CAU 9143, was isolated from a hydric soil sample collected from Seogmo Island in the Republic of Korea. Strain CAU 9143 grew optimally at 30 °C, at pH 7.0 and in the presence of 1 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain CAU 9143 belonged to the genus Arthrobacter and was closely related to Arthrobacter ginkgonis SYP-A7299 (97.1 % similarity). Strain CAU 9143 contained menaquinone MK-9 (H2) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two glycolipids and two unidentified phospholipids as the major polar lipids. The whole-cell sugars were glucose and galactose. The peptidoglycan type was A4a (l-Lys–D-Glu2) and the major cellular fatty acid was anteiso-C15 : 0. The DNA G+C content was 64.4 mol% and the level of DNA–DNA relatedness between CAU 9143 and the most closely related strain, A. ginkgonis SYP-A7299, was 22.3 %. Based on phenotypic, chemotaxonomic and genetic data, strain CAU 9143 represents a novel species of the genus Arthrobacter , for which the name Arthrobacter paludis sp. nov. is proposed. The type strain is CAU 9143 (=KCTC 13958,=CECT 8917).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002426
2017-11-03
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/47.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002426&mimeType=html&fmt=ahah

References

  1. Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 1947; 54: 291– 303 [PubMed]
    [Google Scholar]
  2. Chen YG, Tang SK, Zhang YQ, Li ZY, Yi LB et al. Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie van Leeuwenhoek 2009; 96: 63– 70 [CrossRef] [PubMed]
    [Google Scholar]
  3. Cheng J, Zhang MY, Zhao JC, Xu H, Zhang Y et al. Arthrobacter ginkgonis sp. nov., an actinomycete isolated from rhizosphere of Ginkgo biloba L. Int J Syst Evol Microbiol 2017; 67: 319– 324 [CrossRef] [PubMed]
    [Google Scholar]
  4. Kageyama A, Morisaki K, Omura S, Takahashi Y. Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp. nov. Int J Syst Evol Microbiol 2008; 58: 53– 56 [CrossRef] [PubMed]
    [Google Scholar]
  5. Dastager SG, Qin L, Tang SK, Krishnamurthi S, Lee JC et al. Arthrobacter enclensis sp. nov., isolated from sediment sample. Arch Microbiol 2015; 96: 775– 782
    [Google Scholar]
  6. Hu QW, Chu X, Xiao M, Li CT, Yan ZF et al. Arthrobacter deserti sp. nov., isolated from a desert soil sample. Int J Syst Evol Microbiol 2016; 66: 2035– 2040 [CrossRef] [PubMed]
    [Google Scholar]
  7. Hoang VA, Kim YJ, Nguyen NL, Yang DC. Arthrobacter gyeryongensis sp. nov., isolated from soil of a Gynostemma pentaphyllum field. Int J Syst Evol Microbiol 2014; 64: 420– 425 [CrossRef] [PubMed]
    [Google Scholar]
  8. Lee JS, Lee KC, Pyun YR, Bae KS. Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int J Syst Evol Microbiol 2003; 53: 1277– 1280 [CrossRef] [PubMed]
    [Google Scholar]
  9. Park Y, Kook M, Ngo HT, Kim KY, Park SY et al. Arthrobacter bambusae sp. nov., isolated from soil of a bamboo grove. Int J Syst Evol Microbiol 2014; 64: 3069– 3074 [CrossRef] [PubMed]
    [Google Scholar]
  10. Yu XY, Zhang L, Ren B, Yang N, Liu M et al. Arthrobacter liuii sp. nov., resuscitated from Xinjiang desert soil. Int J Syst Evol Microbiol 2015; 65: 896– 901 [CrossRef] [PubMed]
    [Google Scholar]
  11. Zhang J, Ma Y, Yu H. Arthrobacter cupressi sp. nov., an actinomycete isolated from the rhizosphere soil of Cupressus sempervirens. Int J Syst Evol Microbiol 2012; 62: 2731– 2736 [CrossRef] [PubMed]
    [Google Scholar]
  12. Reddy GS, Aggarwal RK, Matsumoto GI, Shivaji S. Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 2000; 50: 1553– 1561 [CrossRef] [PubMed]
    [Google Scholar]
  13. Wang F, Gai Y, Chen M, Xiao X. Arthrobacter psychrochitiniphilus sp. nov., a psychrotrophic bacterium isolated from Antarctica. Int J Syst Evol Microbiol 2009; 59: 2759– 2762 [CrossRef] [PubMed]
    [Google Scholar]
  14. Gordon RE, Mihm JM. Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 1962; 98: 628– 636 [CrossRef]
    [Google Scholar]
  15. Lane DJ. 16S/23S RNA sequencing. In Goodfellow M, Stackebrandt E. (editors) Nucleic Acid Techniques in Bacterial Systematics London: John Wiley & Sons Ltd; 1991; pp. 115– 175
    [Google Scholar]
  16. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2009; 47: 2948
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  19. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  20. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HH. (editor) Mammalian Protein Metabolism New York: Academic Press; 1985; pp. 21– 132
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  22. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  23. Goris J, Suzuki K-Ichiro, Vos PD, Nakase T, Kersters K. Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 1998; 44: 1148– 1153 [CrossRef]
    [Google Scholar]
  24. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  25. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070
    [Google Scholar]
  26. Nicholson WL, Setlow P. Dramatic increase in negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis. J Bacteriol 1990; 172: 7– 14 [CrossRef] [PubMed]
    [Google Scholar]
  27. Conn HJ, Bartholomew JW, Jennison MW. Staining methods. In Society of American Bacteriologists. (editor) Manual of Microbial Methods New York: McGraw-Hill; 1957; pp. 30– 36
    [Google Scholar]
  28. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef] [PubMed]
    [Google Scholar]
  29. Moraine RA, Rogovin P. Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 1966; 8: 511– 524 [CrossRef]
    [Google Scholar]
  30. Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 1981; 7: 235– 243 [CrossRef] [PubMed]
    [Google Scholar]
  31. Cappuccino JG, Sherman N. Microbiology: a Laboratory Manual, 9th ed. San Francisco: Benjamin Cummings Publishing; 2010
    [Google Scholar]
  32. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  33. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980; 188: 221– 233 [CrossRef]
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  35. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48: 459– 470 [CrossRef]
    [Google Scholar]
  36. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 208 [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002426
Loading
/content/journal/ijsem/10.1099/ijsem.0.002426
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error