1887

Abstract

A novel endophytic filamentous bacterium strain A-T 7972, was isolated from wild orchid Grosourdya appendiculata (Blume) Rchb.f. collected in Thailand. The bacterium developed single non-motile spores with warty surface on substrate mycelia. The taxonomic position was described using a polyphasic approach. The 16S rRNA gene sequence and phylogenetic analysis indicated that strain A-T 7972 belonged to the genus Verrucosispora and shared the highest sequence similarity with V. lutea YIM 013 (98.71 %) and V. gifhornensis DSM 44337 (98.53 %). The values of DNA–DNA relatedness that distinguished this novel strain from its closest species were below 70 %. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The whole-cell sugars were mannose, ribose, glucose and xylose. The predominant menaquinone was MK-9(H4). The predominant fatty acids were branched fatty acids iso-C15 : 0 and iso-C16 : 0. The diagnostic phospholipids profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The G+C content of the genomic DNA was 70.5 mol%. Based on its phenotypic, chemotaxonomic and genotypic characteristics, the new isolate A-T 7972 (=BCC 50981=TBRC 6031=NBRC 112512) is proposed to be the type strain of novel species, Verrucosispora endophytica sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002425
2017-10-18
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5114.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002425&mimeType=html&fmt=ahah

References

  1. Rheims H, Schumann P, Rohde M, Stackebrandt E. Verrucosispora gifhornensis gen. nov., sp. nov., a new member of the actinobacterial family Micromonosporaceae. Int J Syst Bacteriol 1998; 48: 1119– 1127 [CrossRef] [PubMed]
    [Google Scholar]
  2. Ma Z, Zhao S, Cao T, Liu C, Huang Y et al. Verrucosispora sonchi sp. nov., a novel endophytic actinobacterium isolated from the leaves of common sowthistle (Sonchus oleraceus L.). Int J Syst Evol Microbiol 2016; 66: 5430– 5436 [CrossRef] [PubMed]
    [Google Scholar]
  3. Liao ZL, Tang SK, Guo L, Zhang YQ, Tian XP et al. Verrucosispora lutea sp. nov., isolated from a mangrove sediment sample. Int J Syst Evol Microbiol 2009; 59: 2269– 2273 [CrossRef] [PubMed]
    [Google Scholar]
  4. Xi L, Zhang L, Ruan J, Huang Y. Description of Verrucosispora qiuiae sp. nov., isolated from mangrove swamp sediment, and emended description of the genus Verrucosispora. Int J Syst Evol Microbiol 2012; 62: 1564– 1569 [CrossRef] [PubMed]
    [Google Scholar]
  5. Bister B, Bischoff D, Ströbele M, Riedlinger J, Reicke A et al. Abyssomicin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed Engl 2004; 43: 2574– 2576 [CrossRef] [PubMed]
    [Google Scholar]
  6. Keller S, Nicholson G, Drahl C, Sorensen E, Fiedler HP et al. Abyssomicins G and H and atrop-abyssomicin C from the marine Verrucosispora strain AB-18-032. J Antibiot 2007; 60: 391– 394 [CrossRef] [PubMed]
    [Google Scholar]
  7. Schneider K, Keller S, Wolter FE, Röglin L, Beil W et al. Proximicins A, B, and C-antitumor furan analogues of netropsin from the marine actinomycete Verrucosispora induce upregulation of p53 and the cyclin kinase inhibitor p21. Angew Chem Int Ed Engl 2008; 47: 3258– 3261 [CrossRef] [PubMed]
    [Google Scholar]
  8. Shirai M, Okuda M, Motohashi K, Imoto M, Furihata K et al. Terpenoids produced by actinomycetes: isolation, structural elucidation and biosynthesis of new diterpenes, gifhornenolones A and B from Verrucosispora gifhornensis YM28-088. J Antibiot 2010; 63: 245– 250 [CrossRef] [PubMed]
    [Google Scholar]
  9. Nonomura H, Hayakawa M. New methods for the selective isolation of soil Actinomycetes. In Okami Y, Beppu T, Ogawara H. (editors) Biology of Actinomycetes Tokyo: Japan Scientific Societies; 1988; pp. 288– 293
    [Google Scholar]
  10. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  11. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963; 72: 619– 629 [CrossRef] [PubMed]
    [Google Scholar]
  12. Yamada Y, Katsura K, Kawasaki H, Widyastuti Y, Saono S et al. Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 2000; 50: 823– 829 [CrossRef] [PubMed]
    [Google Scholar]
  13. Katsura K, Kawasaki H, Potacharoen W, Saono S, Seki T et al. Asaia siamensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 2001; 51: 559– 563 [CrossRef] [PubMed]
    [Google Scholar]
  14. Kawasaki H, Hoshino Y, Hirata A, Yamasato K. Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria. Arch Microbiol 1993; 160: 358– 362 [CrossRef] [PubMed]
    [Google Scholar]
  15. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  17. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  19. Felsenstein J. Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 1983; 14: 313– 333 [CrossRef]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  23. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  24. Verlander CP. Detection of horseradish peroxidase by colorimetry. In Kricka LJ. (editor) Nonisotopic DNA Probe Techniques New York: Academic Press; 1992; pp. 185– 201 [Crossref]
    [Google Scholar]
  25. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  26. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  27. Suriyachadkun C, Chunhametha S, Thawai C, Tamura T, Potacharoen W et al. Planotetraspora thailandica sp. nov., isolated from soil in Thailand. Int J Syst Evol Microbiol 2009; 59: 992– 997 [CrossRef] [PubMed]
    [Google Scholar]
  28. Itoh T, Kudo T, Parenti F, Seino A. Amended description of the genus Kineosporia, based on chemotaxonomic and morphological studies. Int J Syst Bacteriol 1989; 39: 168– 173 [CrossRef]
    [Google Scholar]
  29. Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007
    [Google Scholar]
  30. Kelly KL. Inter-Society Color Council – National Bureau of Standard Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  31. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24: 54– 63 [CrossRef]
    [Google Scholar]
  32. Greenwood JR, Pickett MJ. Salient features of Haemophilus vaginalis. J Clin Microbiol 1979; 9: 200– 204 [PubMed]
    [Google Scholar]
  33. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  34. Williams ST, Cross T. Actinomycetes. Methods Microbiol 1971; 4: 295– 334 [Crossref]
    [Google Scholar]
  35. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28: 226– 231 [PubMed]
    [Google Scholar]
  36. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30: 131– 134 [CrossRef]
    [Google Scholar]
  37. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  38. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  39. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, Technical Note#101. 2001
    [Google Scholar]
  40. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982; 151: 828– 837 [PubMed]
    [Google Scholar]
  41. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  42. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16: 176– 178
    [Google Scholar]
  43. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20: 435– 443 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002425
Loading
/content/journal/ijsem/10.1099/ijsem.0.002425
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error