1887

Abstract

A Gram-negative, rod-shaped bacterium, designated KH87, was isolated from a fishing hook that had been baited and suspended in seawater off O‘ahu, Hawai‘i. Based on a comparison of 1524 nt of the 16S rRNA gene sequence of strain KH87, its nearest neighbours were the E407-8 (96.2 % identity), K19414 (96.0 %), KMM 1406 (95.8 %), E49 (95.7 %), KMK6 (94.9 %) and GCM72 (94.6 %). Cells of KH87 were motile by a single polar flagellum, strictly aerobic, and catalase- and oxidase-positive. Growth occurred between 4 and 39 °C, and in a circumneutral pH range. Major fatty acids in whole cells of strain KH87 were -9-hexadecenoic acid, hexadecanoic acid and -11-octadecenoic acid. The quinone system contained mostly menaquinone MK-7, and a minor amount of ubiquinone Q-8. The polar lipid profile contained the major lipids phosphatidylglycerol, phosphatidylserine, phosphatidylethanolamine, an unidentified aminolipid, and a lipid not containing phosphate, an amino group or a sugar moiety. Putrescine was the major polyamine. Physiological, biochemical and genomic data, including obligate halophily, absence of amylolytic activity, a quinone system dominated by MK-7 and DNA G+C content (42.0 mol%) distinguished KH87 from extant species; strain KH87 was also distinguished by a multi-locus sequence analysis of aligned and concatenated 16S rRNA, , and gene sequences. Based on phenotypic and genotypic differences, the species sp. nov. is proposed to accommodate KH87 as the type strain (=ATCC BAA-2715=CIP 111115). An emended description of the genus is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002412
2018-01-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/35.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002412&mimeType=html&fmt=ahah

References

  1. Brettar I, Christen R, Höfle MG. Rheinheimera baltica gen. nov., sp. nov., a blue-coloured bacterium isolated from the central Baltic Sea. Int J Syst Evol Microbiol 2002;52:1851–1857 [CrossRef][PubMed]
    [Google Scholar]
  2. Romanenko LA, Uchino M, Falsen E, Zhukova NV, Mikhailov VV et al. Rheinheimera pacifica sp. nov., a novel halotolerant bacterium isolated from deep sea water of the Pacific. Int J Syst Evol Microbiol 2003;53:1973–1977 [CrossRef][PubMed]
    [Google Scholar]
  3. Brettar I, Christen R, Höfle MG. Rheinheimera perlucida sp. nov., a marine bacterium of the Gammaproteobacteria isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 2006;56:2177–2183 [CrossRef][PubMed]
    [Google Scholar]
  4. Yoon JH, Bae SE, Park SE, Kang SJ, Oh TK. Rheinheimera aquimaris sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007;57:1386–1390 [CrossRef][PubMed]
    [Google Scholar]
  5. Li HJ, Zhang XY, Zhang YJ, Zhou MY, Gao ZM et al. Rheinheimera nanhaiensis sp. nov., isolated from marine sediments, and emended description of the genus Rheinheimera Brettar et al. 2002 emend. Merchant et al. 2007. Int J Syst Evol Microbiol 2011;61:1016–1022 [CrossRef][PubMed]
    [Google Scholar]
  6. Park S, Park JM, Won SM, Jung YT, Yoon JH. Rheinheimera arenilitoris sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 2014;64:3749–3754 [CrossRef][PubMed]
    [Google Scholar]
  7. Romanenko LA, Tanaka N, Svetashev VI, Kalinovskaya NI, Mikhailov VV. Rheinheimera japonica sp. nov., a novel bacterium with antimicrobial activity from seashore sediments of the Sea of Japan. Arch Microbiol 2015;197:613–620 [CrossRef][PubMed]
    [Google Scholar]
  8. Baek K, Jeon CO. Rheinheimera aestuari sp. nov., a marine bacterium isolated from coastal sediment. Int J Syst Evol Microbiol 2015;65:2640–2645 [CrossRef][PubMed]
    [Google Scholar]
  9. Baek K, Jeon CO. Rheinheimera gaetbuli sp. nov., a marine bacterium isolated from a tidal flat. Curr Microbiol 2016;72:344–350 [CrossRef][PubMed]
    [Google Scholar]
  10. Halpern M, Senderovich Y, Snir S. Rheinheimera chironomi sp. nov., isolated from a chironomid (Diptera; Chironomidae) egg mass. Int J Syst Evol Microbiol 2007;57:1872–1875 [CrossRef][PubMed]
    [Google Scholar]
  11. Merchant MM, Welsh AK, McLean RJ. Rheinheimera texasensis sp. nov., a halointolerant freshwater oligotroph. Int J Syst Evol Microbiol 2007;57:2376–2380 [CrossRef][PubMed]
    [Google Scholar]
  12. Chen WM, Lin CY, Young CC, Sheu SY. Rheinheimera aquatica sp. nov., an antimicrobial activity producing bacterium isolated from freshwater culture pond. J Microbiol Biotechnol 2010;20:1386–1392 [CrossRef][PubMed]
    [Google Scholar]
  13. Liu Y, Jiang JT, Xu CJ, Liu YH, Song XF et al. Rheinheimera longhuensis sp. nov., isolated from a slightly alkaline lake, and emended description of genus Rheinheimera Brettar et al. 2002. Int J Syst Evol Microbiol 2012;62:2927–2933 [CrossRef][PubMed]
    [Google Scholar]
  14. Chen WM, Yang SH, Young CC, Sheu SY. Rheinheimera tilapiae sp. nov., isolated from a freshwater culture pond. Int J Syst Evol Microbiol 2013;63:1457–1463 [CrossRef][PubMed]
    [Google Scholar]
  15. Ryu SH, Chung BS, Park M, Lee SS, Lee S-S et al. Rheinheimera soli sp. nov., a gammaproteobacterium isolated from soil in Korea. Int J Syst Evol Microbiol 2008;58:2271–2274 [CrossRef][PubMed]
    [Google Scholar]
  16. Zhang X, Sun L, Qiu F, McLean RJ, Jiang R et al. Rheinheimera tangshanensis sp. nov., a rice root-associated bacterium. Int J Syst Evol Microbiol 2008;58:2420–2424 [CrossRef][PubMed]
    [Google Scholar]
  17. Suarez C, Ratering S, Geissler-Plaum R, Schnell S. Rheinheimera hassiensis sp. nov. and Rheinheimera muenzenbergensis sp. nov., two species from the rhizosphere of Hordeum secalinum. Int J Syst Evol Microbiol 2014;64:1202–1209 [CrossRef][PubMed]
    [Google Scholar]
  18. Kumar A, Bajaj A, Mathan Kumar R, Kaur G, Kaur N et al. Taxonomic description and genome sequence of Rheinheimera mesophila sp. nov., isolated from an industrial waste site. Int J Syst Evol Microbiol 2015;65:3666–3673 [CrossRef][PubMed]
    [Google Scholar]
  19. Zhong ZP, Liu Y, Liu LZ, Wang F, Zhou YG et al. Rheinheimera tuosuensis sp. nov., isolated from a saline lake. Int J Syst Evol Microbiol 2014;64:1142–1148 [CrossRef][PubMed]
    [Google Scholar]
  20. Schmidt M, Priemé A, Stougaard P. Arsukibacterium ikkense gen. nov., sp. nov, a novel alkaliphilic, enzyme-producing gamma-Proteobacterium isolated from a cold and alkaline environment in Greenland. Syst Appl Microbiol 2007;30:197–201 [CrossRef][PubMed]
    [Google Scholar]
  21. Kolekar YM, Pawar SP, Adav SS, Zheng LQ, Li WJ et al. Alishewanella solinquinati sp. nov., isolated from soil contaminated with textile dyes. Curr Microbiol 2013;67:454–459 [CrossRef][PubMed]
    [Google Scholar]
  22. Gomori G. Preparation of buffers for use in enzyme studies. In Colowick SP, Kaplan NO. (editors) Methods in Enzymologyvol. 1 New York: Academic Press; 1955; pp.139–145
    [Google Scholar]
  23. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981
    [Google Scholar]
  24. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1997
    [Google Scholar]
  25. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  26. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  27. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  28. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  29. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
  30. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  31. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  32. Wan X, Hou S, Hayashi K, Anderson J, Donachie SP. Genome sequence of Rheinheimera salexigens sp. nov. isolated from a fishing hook off O'ahu, Hawai'i. Genome Announc 2016;4:e01390-16 [CrossRef][PubMed]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  34. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  35. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  36. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010;12:1513–1530 [CrossRef][PubMed]
    [Google Scholar]
  37. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015;6:214 [CrossRef][PubMed]
    [Google Scholar]
  38. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  39. Hamana K, Sato W, Gouma K, Yu J, Ino Y et al. Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria. Ann Gunma Health Sci 2006;27:1–16
    [Google Scholar]
  40. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013;63:3280–3286 [CrossRef][PubMed]
    [Google Scholar]
  41. Stackebrandt E. Defining taxonomic ranks. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) The Prokaryotes, 3rd ed.vol. 1 Symbiotic Associations, Biotechnology, Applied Microbiology New York: Springer; 2006; pp.29–57[Crossref]
    [Google Scholar]
  42. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 1999;49:705–724 [CrossRef][PubMed]
    [Google Scholar]
  43. Kim MS, Jo SK, Roh SW, Bae JW. Alishewanella agri sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 2010;60:2199–2203 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002412
Loading
/content/journal/ijsem/10.1099/ijsem.0.002412
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error