1887

Abstract

The taxonomic position of a bacterial strain designated T16R-228, isolated from a rhizosphere soil sample of a tomato plant collected from a farm in Buyeo, Chungcheongnam-do, Republic of Korea, was determined using a polyphasic approach. On the basis of morphological, genetic and chemotaxonomic characteristics, it was determined to belong to the genus Paenibacillus . It was an aerobic, Gram-stain-positive, non-motile, catalase-negative, oxidase-negative rod with peritrichous flagella. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, hydroxyl- phosphatidylethanolamine and one unidentified polar lipid. Menaquiones were MK-7. Predominant cellular fatty acids were anteiso-C15 : 0, C16 : 0 and iso-C16 : 0. DNA G+C content was 56.8 mol%. The phylogenetic tree constructed based on the 16S rRNA gene sequences showed the strain formed a clade with P. mucilaginosus VKPM B-7519, P. edaphicus T7, P. ehimensis KCTC 3748, P. koreensis YC300, P. tianmuensis B27 and P. elgii SD17, showing the highest sequence similarity with P. mucilaginosus VKPM B-7519 (96.5 %). The polyphasic data supported that strain T16R-228 was clearly distinguished from its closely related species and represents a novel species of the genus Paenibacillus for which the name Paenibacillus solanacearum is proposed. The type strain is T16R-228 (=KACC 18654=NBRC 111896).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002410
2017-10-23
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5046.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002410&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64: 253– 260 [PubMed] [Crossref]
    [Google Scholar]
  2. Ludwig W, Schleifer KH, Whitman WB. Family IV. Paenibacillaceae fam. nov. In de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 New York: Springer; 2009; pp. 269
    [Google Scholar]
  3. Cao Y, Chen F, Li Y, Wei S, Wang G. Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol 2015; 65: 165– 170 [CrossRef] [PubMed]
    [Google Scholar]
  4. Chou JH, Chou YJ, Lin KY, Sheu SY, Sheu DS et al. Paenibacillus fonticola sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 2007; 57: 1346– 1350 [CrossRef] [PubMed]
    [Google Scholar]
  5. Yao R, Wang R, Wang D, Su J, Zheng S et al. Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 2014; 64: 805– 811 [CrossRef] [PubMed]
    [Google Scholar]
  6. Priest FG. Genus I. Paenibacillus. In de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergy’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 New York: Springer; 2009; pp. 269– 295
    [Google Scholar]
  7. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978; 5: 123– 127 [CrossRef]
    [Google Scholar]
  8. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  10. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32: 1363– 1371 [CrossRef] [PubMed]
    [Google Scholar]
  11. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  12. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [PubMed]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  16. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  17. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  18. Collins MD, Goodfellow M, Minnikin DE. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 1980; 118: 29– 37 [CrossRef] [PubMed]
    [Google Scholar]
  19. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [CrossRef] [PubMed]
    [Google Scholar]
  20. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Paenibacillus xylanisolvens sp. nov., a xylan-degrading bacterium from soil. Int J Syst Evol Microbiol 2011; 61: 160– 164 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim DS, Bae CY, Jeon JJ, Chun SJ, Oh HW et al. Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol 2004; 54: 2031– 2035 [CrossRef] [PubMed]
    [Google Scholar]
  22. Hu XF, Li SX, Wu JG, Wang JF, Fang QL et al. Transfer of Bacillus mucilaginosus and Bacillus edaphicus to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. and Paenibacillus edaphicus comb. nov. Int J Syst Evol Microbiol 2010; 60: 8– 14 [CrossRef] [PubMed]
    [Google Scholar]
  23. Kuroshima K-I, Sakane T, Takata R, Yokota A. Bacillus ehimensis sp. nov. and Bacillus chitinolyticus sp. nov., new chitinolytic members of the genus Bacillus. Int J Syst Bacteriol 1996; 46: 76– 80 [CrossRef]
    [Google Scholar]
  24. Kim DS, Bae CY, Jeon JJ, Chun SJ, Oh HW et al. Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol 2004; 54: 2031– 2035 [CrossRef] [PubMed]
    [Google Scholar]
  25. Chung YR, Kim CH, Hwang I, Chun J. Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 2000; 50: 1495– 1500 [CrossRef] [PubMed]
    [Google Scholar]
  26. Wu X, Fang H, Qian C, Wen Y, Shen X et al. Paenibacillus tianmuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61: 1133– 1137 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002410
Loading
/content/journal/ijsem/10.1099/ijsem.0.002410
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error