1887

Abstract

A novel actinomycete, designated strain NEAU-BB2C19, was isolated from the root of black soya bean [Glycine max (L.) Merr] collected from Harbin, Heilongjiang Province, China, and characterized using a polyphasic approach. The strain was an aerobic, Gram-stain-positive actinomycete that formed extensively branched substrate mycelium and aerial hyphae. The predominant menaquinones were MK-9(H2) and MK-9(H0). The major cellular fatty acid profile consisted of iso-C16 : 0, 10-methyl C17 : 0 and 10-methyl C18 : 0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, phosphatidylglycerol and glycolipid. The DNA G+C content was 68.2±0.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-BB2C19 should be assigned to the genus Nonomuraea and formed a distinct branch with its closest neighbour Nonomuraea guangzhouensis NEAU-ZJ3 (98.75 % 16S rRNA gene sequence similarity). The morphological and chemotaxonomic properties of the strain were also consistent with those of members of the genus Nonomuraea . A combination of DNA–DNA hybridization results and some phenotypic characteristics indicated that strain NEAU-BB2C19 could be clearly differentiated from its closest phylogenetic relative. Thus, the strain is concluded to represent a novel species of the genus Nonomuraea , for which the name Nonomuraea glycinis sp. nov. is proposed. The type strain is NEAU-BB2C19 (=CGMCC 4.7430=DSM 104838).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002406
2017-10-18
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5026.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002406&mimeType=html&fmt=ahah

References

  1. Zhang Z, Wang Y, Ruan J. Reclassification of Thermomonospora and Microtetraspora. Int J Syst Bacteriol 1998; 48: 411– 422 [CrossRef] [PubMed]
    [Google Scholar]
  2. Chiba S, Suzuki M, Ando K. Taxonomic re-evaluation of ‘Nocardiopsis’ sp. K-252T (=NRRL 15532T): a proposal to transfer this strain to the genus Nonomuraea as Nonomuraea longicatena sp. nov. Int J Syst Bacteriol 1999; 49: 1623– 1630 [CrossRef] [PubMed]
    [Google Scholar]
  3. Nonomura H, Ohara Y. Distribution of actinomycetes in soil. XI. Some new species of the genus Actinomadura Lechevalier et al. J Ferment Technol 1971; 49: 904– 912
    [Google Scholar]
  4. Nakaew N, Sungthong R, Yokota A, Lumyong S. Nonomuraea monospora sp. nov., an actinomycete isolated from cave soil in Thailand, and emended description of the genus Nonomuraea. Int J Syst Evol Microbiol 2012; 62: 3007– 3012 [CrossRef] [PubMed]
    [Google Scholar]
  5. Wang X, Zhao J, Liu C, Wang J, Shen Y et al. Nonomuraea solani sp. nov., an actinomycete isolated from eggplant root (Solanum melongena L.). Int J Syst Evol Microbiol 2013; 63: 2418– 2423 [CrossRef] [PubMed]
    [Google Scholar]
  6. Zhang Y, Zhao J, Liu C, Shen Y, Jia F et al. Nonomuraea shaanxiensis sp. nov., a novel actinomycete isolated from a soil sample. Antonie van Leeuwenhoek 2014; 105: 57– 64 [CrossRef] [PubMed]
    [Google Scholar]
  7. Suksaard P, Mingma R, Srisuk N, Matsumoto A, Takahashi Y et al. Nonomuraea purpurea sp. nov., an actinomycete isolated from mangrove sediment. Int J Syst Evol Microbiol 2016; 66: 4987– 4992 [CrossRef] [PubMed]
    [Google Scholar]
  8. Wang F, Shi J, Huang Y, Wu Y, Deng X. Nonomuraea ceibae sp. nov., an actinobacterium isolated from Ceiba speciosa rhizosphere. Int J Syst Evol Microbiol 2017; 67: 1158– 1162 [CrossRef] [PubMed]
    [Google Scholar]
  9. Sripreechasak P, Phongsopitanun W, Supong K, Pittayakhajonwut P, Kudo T et al. Nonomuraea rhodomycinica sp. nov., isolated from peat swamp forest soil. Int J Syst Evol Microbiol 2017; 67: 1683– 1687 [CrossRef] [PubMed]
    [Google Scholar]
  10. Wu H, Liu B. Nonomuraea thermotolerans sp. nov., a thermotolerant actinomycete isolated from mushroom compost in Guangxi. Int J Syst Evol Microbiol 2016; 66: 894– 900 [CrossRef] [PubMed]
    [Google Scholar]
  11. Shen Y, Jia F, Liu C, Li J, Guo S et al. Nonomuraea zeae sp. nov., isolated from the rhizosphere of corn (Zea mays L.). Int J Syst Evol Microbiol 2016; 66: 2259– 2264 [CrossRef] [PubMed]
    [Google Scholar]
  12. Qin S, Zhao GZ, Klenk HP, Li J, Zhu WY et al. Nonomuraea antimicrobica sp. nov., an endophytic actinomycete isolated from a leaf of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2009; 59: 2747– 2751 [CrossRef] [PubMed]
    [Google Scholar]
  13. Li J, Zhao GZ, Huang HY, Zhu WY, Lee JC et al. Nonomuraea endophytica sp. nov., an endophytic actinomycete isolated from Artemisia annua L. Int J Syst Evol Microbiol 2011; 61: 757– 761 [CrossRef] [PubMed]
    [Google Scholar]
  14. Wang X, Zhao J, Liu C, Wang J, Shen Y et al. Nonomuraea solani sp. nov., an actinomycete isolated from eggplant root (Solanum melongena L.). Int J Syst Evol Microbiol 2013; 63: 2418– 2423 [CrossRef] [PubMed]
    [Google Scholar]
  15. Rachniyom H, Matsumoto A, Indananda C, Duangmal K, Takahashi Y et al. Nonomuraea syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels). Int J Syst Evol Microbiol 2015; 65: 1234– 1240 [CrossRef] [PubMed]
    [Google Scholar]
  16. Qin S, Li J, Zhang YQ, Zhu WY, Zhao GZ et al. Plantactinospora mayteni gen. nov., sp. nov., a member of the family Micromonosporaceae. Int J Syst Evol Microbiol 2009; 59: 2527– 2533 [CrossRef] [PubMed]
    [Google Scholar]
  17. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  18. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57: 141– 145 [PubMed]
    [Google Scholar]
  19. Waksman SA. The Actinomycetes. In: Classification, Identification and Descriptions of Genera and Speciesvol. 2 Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  20. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  21. Kelly KL. Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors published in US. 1964
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  23. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24: 54– 63 [CrossRef]
    [Google Scholar]
  24. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43: 805– 812 [CrossRef]
    [Google Scholar]
  25. Stueland S, Hatai K, Skaar I. Morphological and physiological characteristics of Saprolegnia spp. strains pathogenic to Atlantic salmon, Salmo salar L. J Fish Dis 2005; 28: 445– 453 [CrossRef] [PubMed]
    [Google Scholar]
  26. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30: 178– 182 [CrossRef] [PubMed]
    [Google Scholar]
  27. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy (Special Publication no. 6) Arlington: Society for Industrial Microbiology; 1980; pp. 227– 291
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  29. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp. 267– 287
    [Google Scholar]
  30. Wu C, Lu X, Qin M, Wang Y, Ruan J et al. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16: 176– 178
    [Google Scholar]
  31. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105: 307– 315 [CrossRef] [PubMed]
    [Google Scholar]
  32. Xiang W, Liu C, Wang X, du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61: 1165– 1169 [CrossRef] [PubMed]
    [Google Scholar]
  33. Wang S, Liu C, Zhang Y, Zhao J, Zhang X et al. Nonomuraea guangzhouensis sp. nov., and Nonomuraea harbinensis sp. nov., two novel actinomycetes isolated from soil. Antonie van Leeuwenhoek 2014; 105: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
  34. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50: 2031– 2036 [CrossRef] [PubMed]
    [Google Scholar]
  35. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  36. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  37. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  39. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  40. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983; [Crossref]
    [Google Scholar]
  41. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [PubMed]
    [Google Scholar]
  42. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  43. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12: 195– 206 [Crossref]
    [Google Scholar]
  44. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  45. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  46. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002406
Loading
/content/journal/ijsem/10.1099/ijsem.0.002406
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error