1887

Abstract

A novel Gram-stain-positive, aerobic bacterium, designated strain DHS C021, was isolated from a limestone sample collected from the Puding Karst Ecosystem Research Station of Guizhou Province, southwest China. This strain developed branched vegetative mycelia, and its aerial mycelia fragmented into rod-shaped spores. The cell-wall peptidoglycan contained -diaminopimelic acid and the whole-cell sugars comprised galactose, ribose and mannose. The respiratory quinone was identified as menaquinone MK-9(H). The major cellular fatty acids were iso-C and iso-C. The phospholipids detected were diphosphatidylglycerol, phosphatidylethanolamine, hydroxyl-phosphatidyethanolamine, phosphatidylinositol, phosphotidylinositolmannosides and one unidentified phospholipid. The genomic DNA G+C content was 69.8 mol% and 16S rRNA gene sequence analysis showed that the strain belonged to the genus and shared highest sequence similarity with CGMCC 4.1727 (98.8 %) and CGMCC 4.1646 (98.5 %). However, it could be distinguished from these reference strains based on the low levels of DNA–DNA relatedness (54.5±2.7 and 41.7±3.2 %, respectively). On the basis of morphological, chemotaxonomic and phylogenetic characteristics, and DNA–DNA hybridization data, strain DHS C021 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DHS C021 (=CGMCC 4.7319=KCTC 39694).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002400
2017-11-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4873.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002400&mimeType=html&fmt=ahah

References

  1. Yassin AF, Rainey FA, Brzezinka H, Jahnke KD, Weissbrodt H et al. Lentzea gen. nov., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1995;45:357–363 [CrossRef][PubMed]
    [Google Scholar]
  2. Lee SD, Kim ES, Roe JH, Kim J, Kang SO et al. Saccharothrix violacea sp. nov., isolated from a gold mine cave, and Saccharothrix albidocapillata comb. nov. Int J Syst Evol Microbiol 2000;50:1315–1323 [CrossRef][PubMed]
    [Google Scholar]
  3. Labeda DP, Hatano K, Kroppenstedt RM, Tamura T. Revival of the genus Lentzea and proposal for Lechevalieria gen. nov. Int J Syst Evol Microbiol 2001;51:1045–1050 [CrossRef][PubMed]
    [Google Scholar]
  4. Labeda DP, Donahue JM, Sells SF, Kroppenstedt RM. Lentzea kentuckyensis sp. nov., of equine origin. Int J Syst Evol Microbiol 2007;57:1780–1783 [CrossRef][PubMed]
    [Google Scholar]
  5. Cao CL, Zhou XQ, Qin S, Tao FX, Jiang JH et al. Lentzea guizhouensis sp. nov., a novel lithophilous actinobacterium isolated from limestone from the Karst area, Guizhou, China. Antonie van Leeuwenhoek 2015;108:1365–1372 [CrossRef][PubMed]
    [Google Scholar]
  6. Li X, Zhang L, Ding Y, Gao Y, Ruan J et al. Lentzea jiangxiensis sp. nov., isolated from acidic soil. Int J Syst Evol Microbiol 2012;62:2342–2346 [CrossRef][PubMed]
    [Google Scholar]
  7. Xie Q, Wang Y, Huang Y, Wu Y, Ba F et al. Description of Lentzea flaviverrucosa sp. nov. and transfer of the type strain of Saccharothrix aerocolonigenes subsp. staurosporea to Lentzea albida. Int J Syst Evol Microbiol 2002;52:1815–1820 [CrossRef][PubMed]
    [Google Scholar]
  8. Idris H, Nouioui I, Asenjo JA, Bull AT, Goodfellow M. Lentzea chajnantorensis sp. nov., an actinobacterium from a very high altitude Cerro Chajnantor gravel soil in northern Chile. Antonie van Leeuwenhoek 2017;110:795–802 [CrossRef][PubMed]
    [Google Scholar]
  9. Labeda DP. Genus XI. Lentzea Yassin, Rainey, Brzezinka, Jahnke, Weissbrodt, Budzikiewicz, Stackebrandt, and Schaal 1995, 362vp emend. Labeda, Hatano, Kroppenstedt and Tamura 2001, 1049. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. (editors) Bergey's Manual of Systematic Bacteriology New York: Springer; 2012; pp.1379–1383
    [Google Scholar]
  10. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  11. Waksman SA. The Actinomycetes. Classification, Identification and Descriptions of Genera and Species Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  12. Qin S, Bai JL, Wang Y, Feng WW, Yuan B et al. Tamaricihabitans halophyticus gen. nov., sp. nov., an endophytic actinomycete of the family Pseudonocardiaceae. Int J Syst Evol Microbiol 2015;65:4662–4668 [CrossRef][PubMed]
    [Google Scholar]
  13. Kelly KL. Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  14. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5:123–127 [CrossRef]
    [Google Scholar]
  15. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  16. Kurup PV, Schmitt JA. Numerical taxonomy of Nocardia. Can J Microbiol 1973;19:1035–1048 [CrossRef][PubMed]
    [Google Scholar]
  17. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  18. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  19. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  20. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  21. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  22. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  23. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  24. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  25. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  26. Lau SK, Curreem SO, Lin CC, Fung AM, Yuen KY et al. Streptococcus hongkongensis sp. nov., isolated from a patient with an infected puncture wound and from a marine flatfish. Int J Syst Evol Microbiol 2013;63:2570–2576 [CrossRef][PubMed]
    [Google Scholar]
  27. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  28. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  29. Qin S, Miao Q, Feng W-W, Wang Y, Zhu X et al. Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Applied Soil Ecology 2015;93:47–55 [CrossRef]
    [Google Scholar]
  30. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  33. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  34. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  35. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  36. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  37. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  38. Labeda DP, Lyons AJ. Saccharothrix texasensis sp. nov. and Saccharothrix waywayandensis sp. nov. Int J Syst Bacteriol 1989;39:355–358 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002400
Loading
/content/journal/ijsem/10.1099/ijsem.0.002400
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error