gen. nov., sp. nov., a pectinolytic bacterium isolated from human faeces Free

Abstract

A novel anaerobic pectinolytic bacterium (strain 14) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14 belonged to the family , but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14 was (89.7 % sequence similarity). Strain 14 shared ~99 % sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6 µm in diameter. Strain 14 fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14 as a novel genus in the family . The name gen. nov., sp. nov. is proposed; the type strain is 14 (JCM 31914=DSM 104782).

Keyword(s): human colon , pectin and Ruminococcaceae
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002395
2017-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/4992.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002395&mimeType=html&fmt=ahah

References

  1. White BA, Lamed R, Bayer EA, Flint HJ. Biomass utilization by gut microbiomes. Annu Rev Microbiol 2014; 68:279–296 [View Article][PubMed]
    [Google Scholar]
  2. Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 2009; 344:1879–1900 [View Article][PubMed]
    [Google Scholar]
  3. Jayani RS, Saxena S, Gupta R. Microbial pectinolytic enzymes: a review. Process Biochem 2005; 40:2931–2944 [View Article]
    [Google Scholar]
  4. Despres J, Forano E, Lepercq P, Comtet-Marre S, Jubelin G et al. Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics 2016; 17:147 [View Article][PubMed]
    [Google Scholar]
  5. Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJ, Garcia-Gil LJ et al. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 2012; 78:420–428 [View Article][PubMed]
    [Google Scholar]
  6. Salyers AA, West SE, Vercellotti JR, Wilkins TD. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol 1977; 34:529–533[PubMed]
    [Google Scholar]
  7. Hungate R. A roll tube method for cultivation of strict anaerobes. Methods Microbiol 1969; 3:117–132 [Crossref]
    [Google Scholar]
  8. Melton LD, Smith BG. Isolation of plant cell walls and fractionation of cell wall polysaccharides. Curr Prot in Food Anal Chem 2001E3.1.1-E3.1.23
    [Google Scholar]
  9. Wee MS, Matia-Merino L, Carnachan SM, Sims IM, Goh KK. Structure of a shear-thickening polysaccharide extracted from the New Zealand black tree fern, Cyathea medullaris . Int J Biol Macromol 2014; 70:86–91 [View Article][PubMed]
    [Google Scholar]
  10. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933; 77:194 [View Article][PubMed]
    [Google Scholar]
  11. Bartholomew JW, Mittwer T. The Gram stain. Bacteriol Rev 1952; 16:1–29[PubMed]
    [Google Scholar]
  12. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. vol. 3 New York: Cold Spring Harbor Laboratory Press; 1989 pp. E3E4
    [Google Scholar]
  13. Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 2002; 148:257–266 [View Article][PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  16. Richardson AJ, Calder AG, Stewart CS, Smith A. Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Lett Appl Microbiol 1989; 9:5–8 [View Article]
    [Google Scholar]
  17. Parkar SG, Jobsis CMH, Herath TD, Stoklosinski HM, van Klink JW et al. Metabolic and microbial responses to the complexation of manuka honey with α-cyclodextrin after simulated gastrointestinal digestion and fermentation. J Funct Foods 2017; 31:266–273 [View Article]
    [Google Scholar]
  18. Lamed R, Setter E, Bayer EA. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum . J Bacteriol 1983; 156:828–836[PubMed]
    [Google Scholar]
  19. Madden RH. Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile. Int J Syst Bacteriol 1983; 33:837–840 [View Article]
    [Google Scholar]
  20. Patel GB, Khan AW, Agnew BJ, Colvin JR. Isolation and characterization of an anaerobic, cellulolytic microorganism, Acetivibrio cellulolyticus gen. nov., sp. nov. Int J Syst Bacteriol 1980; 30:179–185 [View Article]
    [Google Scholar]
  21. Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S et al. Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 2009; 59:1764–1770 [View Article][PubMed]
    [Google Scholar]
  22. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  23. Brown SD, Lamed R, Morag E, Borovok I, Shoham Y et al. Draft genome sequences for Clostridium thermocellum wild-type strain YS and derived cellulose adhesion-defective mutant strain AD2. J Bacteriol 2012; 194:3290–3291 [View Article][PubMed]
    [Google Scholar]
  24. Chassard C, Delmas E, Robert C, Lawson PA, Bernalier-Donadille A. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. Int J Syst Evol Microbiol 2012; 62:138–143 [View Article][PubMed]
    [Google Scholar]
  25. de Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 3 New York: Springer; 2009
    [Google Scholar]
  26. Ifkovits RW, Ragheb HS. Cellular fatty acid composition and identification of rumen bacteria. Appl Microbiol 1968; 16:1406[PubMed]
    [Google Scholar]
  27. Timmons MD, Knutson BL, Nokes SE, Strobel HJ, Lynn BC. Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains. Appl Microbiol Biotechnol 2009; 82:929–939 [View Article][PubMed]
    [Google Scholar]
  28. Salyers AA, Vercellotti JR, West SE, Wilkins TD. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 1977; 33:319–322[PubMed]
    [Google Scholar]
  29. Yang JC, Chynoweth DP, Williams DS, Li A. Clostridium aldrichii sp. nov., a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester. Int J Syst Bacteriol 1990; 40:268–272 [View Article][PubMed]
    [Google Scholar]
  30. Moore WEC, Cato EP, Holdeman LV. Ruminococcus bromii sp. n. and emendation of the description of Ruminococcus sijpestein . Int J Syst Bacteriol 1972; 22:78–80 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002395
Loading
/content/journal/ijsem/10.1099/ijsem.0.002395
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed