sp. nov., isolated from mangrove sediment Free

Abstract

A Gram-stain-negative, facultative anaerobic, yellow-pigmented, rod-shaped, non-flagellum and non-motile bacterial strain, designed C9-11, was isolated from mangrove sediment in Zhangzhou, Fujian Province, China. Growth was observed at temperatures from 15 to 37 °C (optimum 30 °C), at salinities from 0 to 4 % (optimum 0.5–2 %) and at pH from 6 to 8 (optimum 7). Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain C9-11 was a member of the genus . Strain C9-11 was related most closely to Y2 (96.8 % 16S rRNA gene sequence similarity), followed by H32 (96.5 %). The G+C content of the genomic DNA was 63.5 mol%. The dominant fatty acids were Cω7 (41.6 %), Cω6 (15.4 %), 11-methyl Cω7 (8.1 %), summed feature 3 (comprising Cω7 and/or Cω6 7.4 %) and C (6.2 %). The predominant respiratory quinone was ubiquinone-10 and the major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid. According to its morphology, physiology, fatty acid composition and 16S rRNA gene sequence analysis, strain C9-11belongs to genus r, but can readily be distinguished from recognized species. Strain C9-11 is proposed as the type strain of a novel species of the genus r, for which the name sp. nov (=MCCC 1K03311=JCM 32056) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002393
2017-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4851.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002393&mimeType=html&fmt=ahah

References

  1. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007; 57:2207–2211 [View Article][PubMed]
    [Google Scholar]
  2. Xue X, Zhang K, Cai F, Dai J, Wang Y et al. Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter . Int J Syst Evol Microbiol 2012; 62:28–32 [View Article][PubMed]
    [Google Scholar]
  3. Xue H, Piao CG, Guo MW, Wang LF, Fang W et al. Description of Altererythrobacter aerius sp. nov., isolated from air, and emended description of the genus Altererythrobacter . Int J Syst Evol Microbiol 2016; 66:4543–4548 [View Article][PubMed]
    [Google Scholar]
  4. Yoon JH, Kang KH, Yeo SH, Oh TK. Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2005; 55:1167–1170 [View Article][PubMed]
    [Google Scholar]
  5. Lai Q, Yuan J, Shao Z. Altererythrobacter marinus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009; 59:2973–2976 [View Article][PubMed]
    [Google Scholar]
  6. Seo SH, Lee SD. Altererythrobacter marensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2010; 60:307–311 [Crossref]
    [Google Scholar]
  7. Matsumoto M, Iwama D, Arakaki A, Tanaka A, Tanaka T et al. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int J Syst Evol Microbiol 2011; 61:2956–2961 [View Article][PubMed]
    [Google Scholar]
  8. Fan ZY, Xiao YP, Hui W, Tian GR, Lee JS et al. Altererythrobacter dongtanensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2011; 61:2035–2039 [View Article][PubMed]
    [Google Scholar]
  9. Park SC, Baik KS, Choe HN, Lim CH, Kim HJ et al. Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61:709–715 [View Article][PubMed]
    [Google Scholar]
  10. Jeong SH, Jin HM, Lee HJ, Jeon CO. Altererythrobacter gangjinensis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2013; 63:971–976 [View Article][PubMed]
    [Google Scholar]
  11. Nedashkovskaya OI, Cho SH, Joung Y, Joh K, Kim MN et al. Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol 2013; 63:93–97 [View Article][PubMed]
    [Google Scholar]
  12. Lei X, Li Y, Chen Z, Zheng W, Lai Q et al. Altererythrobacter xiamenensis sp. nov., an algicidal bacterium isolated from red tide seawater. Int J Syst Evol Microbiol 2014; 64:631–637 [View Article][PubMed]
    [Google Scholar]
  13. Yang Y, Zhang G, Sun Z, Cheung MK, Huang C. Altererythrobacter oceanensis sp. nov., isolated from the Western Pacific. Antonie van Leeuwenhoek 2014; 106:1191–1198 [View Article][PubMed]
    [Google Scholar]
  14. Jung YT, Park S, Lee JS, Yoon JH. Altererythrobacter aestiaquae sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:3943–3949 [View Article][PubMed]
    [Google Scholar]
  15. Wu YH, Xu L, Meng FX, Zhang DS, Wang CS et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:116–121 [View Article][PubMed]
    [Google Scholar]
  16. Zhang G, Yang Y, Wang L. Altererythrobacter aurantiacus sp. nov., isolated from deep-sea sediment. Antonie van Leeuwenhoek 2016; 109:1245–1251 [View Article][PubMed]
    [Google Scholar]
  17. Kim JH, Yoon JH, Kim W. Altererythrobacter sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66:5424–5429 [View Article][PubMed]
    [Google Scholar]
  18. Liang X, Lin H, Wang K, Liao Y, Lai Q et al. Altererythrobacter salegens sp. nov., a slightly halophilic bacterium isolated from surface sediment. Int J Syst Evol Microbiol 2017; 67:909–913 [View Article][PubMed]
    [Google Scholar]
  19. Zhao Q, Li HR, Han QQ, He AL, Nie CY et al. Altererythrobacter soli sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 2017; 67:454–459 [View Article][PubMed]
    [Google Scholar]
  20. Kang JW, Kim MS, Lee JH, Baik KS, Seong CN. Altererythrobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016; 66:2491–2496 [View Article][PubMed]
    [Google Scholar]
  21. Park S, Jung YT, Park JM, Yoon JH. Altererythrobacter confluentis sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2016; 66:4002–4008 [View Article][PubMed]
    [Google Scholar]
  22. Qin D, Ma C, Hu A, Zhang F, Hu H et al. Altererythrobacter estronivorus sp. nov., an estrogen-degrading strain isolated from Yundang Lagoon of Xiamen city in China. Curr Microbiol 2016; 72:634–640 [View Article][PubMed]
    [Google Scholar]
  23. Kumar NR, Nair S, Langer S, Busse HJ, Kämpfer P. Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 2008; 58:839–844 [View Article][PubMed]
    [Google Scholar]
  24. Srinivasan S, Joo ES, Kim EB, Jeon SH, Jung HY et al. Altererythrobacter terrae sp. nov., isolated from mountain soil. Antonie van Leeuwenhoek 2016; 109:397–404 [View Article][PubMed]
    [Google Scholar]
  25. Zhang W, Yuan X, Feng Q, Zhang R, Zhao X et al. Altererythrobacter buctense sp. nov., isolated from mudstone core. Antonie van Leeuwenhoek 2016; 109:793–799 [View Article][PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  29. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  30. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526[PubMed]
    [Google Scholar]
  31. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  32. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  33. Et S, Gottlieb D. Methods for characterization of Streptomyces species1. Int J Syst Evol Microbiol 1966; 16:313–340
    [Google Scholar]
  34. Locci R. Streptomyces and related genera. In Williams ST, Sharpe ME, Holt J. (editors) Bergeys Manual of Systematic Bacteriology vol. 4 Baltimore: Williams and Wilkins; 1989 pp. 2451–2492
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  36. Collins M. Isoprenoid quinone analysis in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 267–287
    [Google Scholar]
  37. Kates M. Techniques of Lipidology, 2nd ed.rev. Amsterdam: Elsevier; 1986
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002393
Loading
/content/journal/ijsem/10.1099/ijsem.0.002393
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed