1887

Abstract

The bacteria strain EN12 was isolated from forest soil in the Republic of Korea. The cells were Gram-negative, non-motile and rod-shaped, and the strain was strictly aerobic. Phylogenetic analysis of its 16S rRNA gene sequences showed that strain EN12 belonged to the class of the phylum , and its closest relative is 5G38, with a sequence similarity of 95.5 %. The average DNA sequence similarity from validly described species within the genus was 92.5±1.3 %. Chemotaxonomic data including major ubiquinones (menaquinone-7), polar lipids (phosphatidylethanolamine and sphingolipid) and fatty acids (iso-C, iso-C 3-OH, and C 6/C 7) also supported an affiliation of strain EN12 with the genus . Genotypic and phenotypic differentiation of strain EN12 from six published species was revealed through DNA–DNA relatedness and physiological/biochemical tests. Results of these phenotypic, phylogenetic and chemotaxonomic analyses indicated that strain EN12 is a novel species in the genus , for which we propose the name sp. nov. (=KCTC 42612=LMG 28820).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002383
2017-11-01
2020-12-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4814.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002383&mimeType=html&fmt=ahah

References

  1. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998;48:165–177 [CrossRef][PubMed]
    [Google Scholar]
  2. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983;33:580–598 [CrossRef]
    [Google Scholar]
  3. Ntougias S, Fasseas C, Zervakis GI. Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete. Int J Syst Evol Microbiol 2007;57:398–404 [CrossRef][PubMed]
    [Google Scholar]
  4. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007;57:2349–2354 [CrossRef][PubMed]
    [Google Scholar]
  5. Kim MK, Na JR, Cho DH, Soung NK, Yang DC. Parapedobacter koreensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2007;57:1336–1341 [CrossRef][PubMed]
    [Google Scholar]
  6. Vaz-Moreira I, Nobre MF, Nunes OC, Manaia CM. Pseudosphingobacterium domesticum gen. nov., sp. nov., isolated from home-made compost. Int J Syst Evol Microbiol 2007;57:1535–1538 [CrossRef][PubMed]
    [Google Scholar]
  7. Asker D, Beppu T, Ueda K. Nubsella zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Sphingobacteriaceae isolated from freshwater. Int J Syst Evol Microbiol 2008;58:601–606 [CrossRef][PubMed]
    [Google Scholar]
  8. Weon HY, Kim BY, Lee CM, Hong SB, Jeon YA et al. Solitalea koreensis gen. nov., sp. nov. and the reclassification of [Flexibacter] canadensis as Solitalea canadensis comb. nov. Int J Syst Evol Microbiol 2009;59:1969–1975 [CrossRef][PubMed]
    [Google Scholar]
  9. Prasad S, Manasa BP, Buddhi S, Pratibha MS, Begum Z et al. Arcticibacter svalbardensis gen. nov., sp. nov., of the family Sphingobacteriaceae in the phylum Bacteroidetes, isolated from Arctic soil. Int J Syst Evol Microbiol 2013;63:1627–1632 [CrossRef][PubMed]
    [Google Scholar]
  10. Alef K, Nannipieri P. Methods in Applied Soil Microbiology and Biochemistry London: Academic Press; 1995
    [Google Scholar]
  11. Jukes T, Cantor C. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[Crossref]
    [Google Scholar]
  12. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  13. Lanyi B. 1 Classical and rapid identification methods for medically important bacteria. Method Microbiol 1988;19:1–67[Crossref]
    [Google Scholar]
  14. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  15. Collins M. 11 Analysis of Isoprenoid Quinones. Method Microbiol 1985;18:329–366[Crossref]
    [Google Scholar]
  16. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980;8:87–91 [CrossRef]
    [Google Scholar]
  17. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  18. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  19. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  20. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnel AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp.121–161
    [Google Scholar]
  21. Seldin L, Dubnau D. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 1985;35:151–154 [CrossRef]
    [Google Scholar]
  22. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics INT 2004;11:36–42
    [Google Scholar]
  23. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  24. Kim DU, Kim YJ, Shin DH, Weon HY, Kwon SW et al. Pedobacter namyangjuensis sp. nov. isolated from soil and reclassification of Nubsella zeaxanthinifaciens Asker et al. 2008 as Pedobacter zeaxanthinifaciens comb. nov. J Microbiol 2013;51:25–30 [CrossRef][PubMed]
    [Google Scholar]
  25. Kwon SW, Son JA, Kim SJ, Kim YS, Park IC et al. Pedobacter rhizosphaerae sp. nov. and Pedobacter soli sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 2011;61:2874–2879 [CrossRef][PubMed]
    [Google Scholar]
  26. Kwon SW, Kim BY, Lee KH, Jang KY, Seok SJ et al. Pedobacter suwonensis sp. nov., isolated from the rhizosphere of Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 2007;57:480–484 [CrossRef][PubMed]
    [Google Scholar]
  27. Yoon JH, Kang SJ, Oh TK. Pedobacter terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007;57:2462–2466 [CrossRef][PubMed]
    [Google Scholar]
  28. Yang JE, Son HM, Lee JM, Shin HS, Park SY et al. Pedobacter ginsenosidimutans sp. nov., with ginsenoside-converting activity. Int J Syst Evol Microbiol 2013;63:4396–4401 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002383
Loading
/content/journal/ijsem/10.1099/ijsem.0.002383
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error