1887

Abstract

A novel actinomycete, designated strain 1H-SSA8, was isolated from the head of an ant (Camponotus japonicus Mayr) and was found to produce amphotericin. A polyphasic approach was employed to determine the status of strain 1H-SSA8. Morphological and chemotaxonomic characteristics were consistent with those of members of the genus Streptomyces . The menaquinones detected were MK-9(H6), MK-9(H8) and MK-9(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and phosphatidylinositol mannoside. The major fatty acids were identified as iso-C16 : 0, C16 : 0, C15 : 0 and anteiso-C15 : 0. Analysis of the 16S rRNA gene sequence showed that strain 1H-SSA8 belongs to the genus Streptomyces with high sequence similarity to Streptomyces ramulosus NRRL B-2714 (99.2 %). Two tree-making algorithms based on 16S rRNA gene sequences showed that the isolate formed a phyletic line with Streptomyces himastatinicus ATCC 53653 (98.7 %). The MLSA utilizing partial sequences of the housekeeping genes (atpD, gyrB, recA, rpoB and trpB) also supported the position. However, evolutionary distances were higher than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. Moreover, the low level of DNA–DNA relatedness and phenotypic differences allowed the novel isolate to be differentiated from its most closely related strain S. ramulosus NRRL B-2714 and strain S. himastatinicus ATCC 53653. It is concluded that the organism can be classified as representing a novel species of the genus Streptomyces , for which the name Streptomyces amphotericinicus sp. nov. is proposed. The type strain is 1H-SSA8 (=CGMCC 4.7350=DSM 103128).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002382
2017-10-16
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/4967.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002382&mimeType=html&fmt=ahah

References

  1. Kampfer P. International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of the Streptomycetaceae: Minutes of the meeting, 25 July 2005, San Francisco, CA, USA. Int J Syst Evol Microbiol 2006; 56: 495 [CrossRef]
    [Google Scholar]
  2. Lodders N, Kämpfer P. Streptomycetaceae: Phylogeny, Ecology and Pathogenicity. eLS Chichester: John Wiley & Sons Ltd; 2007; www.els.net
    [Google Scholar]
  3. Sanglier JJ, Haag H, Huck TA, Fehr T. Review of actinomycetes compounds 1990–1995. Expert Opin Investig Drugs 1996; 5: 207– 223 [Crossref]
    [Google Scholar]
  4. Watve MG, Tickoo R, Jog MM, Bhole BD. How many antibiotics are produced by the genus Streptomyces?. Arch Microbiol 2001; 176: 386– 390 [CrossRef] [PubMed]
    [Google Scholar]
  5. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002; 417: 141– 147 [CrossRef] [PubMed]
    [Google Scholar]
  6. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 2003; 21: 526– 531 [CrossRef] [PubMed]
    [Google Scholar]
  7. Ward AC, Goodfellow M. Phylogeny and functionality: taxonomy as a roadmap to genes. In Bull AT. (editor) Diversity Microbial and Bioprospecting Washington, DC: American Society for Microbiology; 2004; pp. 288– 313 [Crossref]
    [Google Scholar]
  8. Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58: 1– 26 [CrossRef] [PubMed]
    [Google Scholar]
  9. Alvin A, Miller KI, Neilan BA. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 2014; 169: 483– 495 [CrossRef] [PubMed]
    [Google Scholar]
  10. Nikapitiya C. Bioactive secondary metabolites from marine microbes for drug discovery. Adv Food Nutr Res 2012; 65: 363– 387 [CrossRef] [PubMed]
    [Google Scholar]
  11. Zhang YL, Ge HM, Li F, Song YC, Tan RX. New phytotoxic metabolites from Pestalotiopsis sp. HC02, a fungus residing in chondracris rosee gut. Chem Biodivers 2008; 5: 2402– 2407 [CrossRef] [PubMed]
    [Google Scholar]
  12. Haeder S, Wirth R, Herz H, Spiteller D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 2009; 106: 4742– 4746 [CrossRef] [PubMed]
    [Google Scholar]
  13. Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H et al. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci USA 2011; 108: 1955– 1960 [CrossRef] [PubMed]
    [Google Scholar]
  14. Dângelo RA, de Souza DJ, Mendes TD, Couceiro JC, Lucia TM. Actinomycetes inhibit filamentous fungi from the cuticle of Acromyrmex leafcutter ants. J Basic Microbiol 2016; 56: 229– 237 [CrossRef] [PubMed]
    [Google Scholar]
  15. Boya P CA, Fernández-Marín H, Mejía LC, Spadafora C, Dorrestein PC et al. Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants. Sci Rep 2017; 7: 5604 [CrossRef] [PubMed]
    [Google Scholar]
  16. Seipke RF, Barke J, Brearley C, Hill L, Yu DW et al. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS One 2011; 6: e22028 [CrossRef] [PubMed]
    [Google Scholar]
  17. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  18. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50: 2031– 2036 [CrossRef] [PubMed]
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  24. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge Universiry Press; 1983; [Crossref]
    [Google Scholar]
  25. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: [CrossRef] [PubMed]
    [Google Scholar]
  27. Hatano K, Nishii T, Kasai H. Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA–DNA hybridization and sequences of gyrB, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev. Int J Syst Evol Microbiol 2003; 53: 1519– 1529 [CrossRef] [PubMed]
    [Google Scholar]
  28. Guo Y, Zheng W, Rong X, Huang Y. A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 2008; 58: 149– 159 [CrossRef] [PubMed]
    [Google Scholar]
  29. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12B: 195– 206 [Crossref]
    [Google Scholar]
  30. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  31. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  32. Guan X, Liu C, Zhao J, Fang B, Zhang Y et al. Streptomyces maoxianensis sp. nov., a novel actinomycete isolated from soil in Maoxian, China. Antonie van Leeuwenhoek 2015; 107: 1119– 1126 [CrossRef] [PubMed]
    [Google Scholar]
  33. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  34. Waksman SA. Classification, identification and descriptions of genera and species. The Actinomycetes, 2ed. Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  35. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57: 141– 145 [PubMed]
    [Google Scholar]
  36. Waksman SA. A summary of current knowledge. The Actinomycetes New York: Ronald Press; 1967
    [Google Scholar]
  37. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington, DC: National Bureau of Standards; 1964
    [Google Scholar]
  38. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013; 103: 399– 408 [CrossRef] [PubMed]
    [Google Scholar]
  39. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55: 1149– 1153 [CrossRef] [PubMed]
    [Google Scholar]
  40. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24: 54– 63 [CrossRef]
    [Google Scholar]
  41. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43: 805– 812 [CrossRef]
    [Google Scholar]
  42. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  43. Mckerrow J, Vagg S, Mckinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of gram-positive bacteria. Lett Appl Microbiol 2000; 30: 178– 182 [CrossRef] [PubMed]
    [Google Scholar]
  44. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz WH, Thayer DW. (editors) Actinomycete Taxonomy Special Publicationvol. 6 Arlington: Society of Industrial Microbiology; 1994; pp. 227– 291
    [Google Scholar]
  45. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  46. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp. 267– 287
    [Google Scholar]
  47. Wu C, Lu X, Qin M, Wang Y, Ruan J et al. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16: 176– 178
    [Google Scholar]
  48. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105: 307– 315 [CrossRef] [PubMed]
    [Google Scholar]
  49. Xiang W, Liu C, Wang X, du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61: 1165– 1169 [CrossRef] [PubMed]
    [Google Scholar]
  50. Bai L, Liu C, Guo L, Piao C, Li Z et al. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr. Antonie van Leeuwenhoek 2016; 109: 253– 261 [CrossRef] [PubMed]
    [Google Scholar]
  51. Liu SH, Xu MD, Zhang H, Qi H, Zhang J et al. New cytotoxic spectinabilin derivative from ant-associated Streptomyces sp. 1H-GS5. J Antibiot 2016; 69: 128– 131 [CrossRef] [PubMed]
    [Google Scholar]
  52. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA–DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012; 35: 7– 18 [CrossRef] [PubMed]
    [Google Scholar]
  53. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  54. Kämpfer P. The Actinobacteria, Genus I. Streptomyces. In Whitman WB, Kämpfer P, Goodfellow M. (editors) Bergey’s Manual of Systematic Bacteriology 2nd ed, vol 5 New York: Springer; 2012; pp. 1455– 1767 [Crossref]
    [Google Scholar]
  55. Lechevalier HA, Lechevalier MP. A critical evaluation of the genera of aerobic actinomycetes. In Prauser H. (editor) The Actinomycetes Jena: Gustav Fischer Verlag; 1970; pp. 393– 405
    [Google Scholar]
  56. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20: 435– 443 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002382
Loading
/content/journal/ijsem/10.1099/ijsem.0.002382
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error