1887

Abstract

Two novel actinobacteria, designated YIM 121936 and YIM 121940, were isolated from alkaline sediment in Yuanjiang, China. The cells of the novel strains were Gram-stain-positive, aerobic, motile, non-spore-forming and coccus-shaped. The two strains both contained -diaminopimelic acid as the diagnostic diamino acid. The whole-cell sugars were arabinose, galactose, glucose, mannose and ribose. The predominant menaquinone was MK-9(H). The polar lipid profile of both strains comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, one unknown phosphoglycolipid and five unknown phospholipids. The predominant fatty acids of both strains were anteisoC. The genomic DNA G+C contents of strains YIM 121936 and YIM 121940 were 74.7 and 75.2 %, respectively. Strain YIM 121936 was closely related to IFO 15268 (97.19 %), YIM 121300 (97.00 %) and NBRC 110933 (97.00 %). Strain YIM 121940 was closely related to IFO 15268 (97.41 %), KLBMP 1274 (97.18 %), RP-B16 (97.09 %), SRS 30216 (97.09 %), YIM 121300 (97.00 %) and NBRC 110933 (97.00 %). Strain YIM 121936 shared high 16S rRNA gene sequence similarity (99 %) with YIM 121940. Similarities of two strains with other species of the genus were <97 %. The DNA–DNA hybridization values were below 70 % among all the strains studied. YIM 121936 and YIM 121940 are representatives of two new species in the genus , for which names sp. nov. (type strain YIM 121936=KCTC 39738=DSM 102155) and sp. nov. (type strain YIM 121940=KCTC 39739=DSM 102158) are proposed, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002380
2017-11-01
2024-11-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4801.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002380&mimeType=html&fmt=ahah

References

  1. Yokota A, Tamura T, Nishii T, Hasegawa T. Kineococcus aurantiacus gen.nov., sp. nov., a new aerobic, Gram-positive, motile coccus with meso-diaminopimelic acid and arabinogalactan in the cell wall. Int J Syst Bacteriol 1993; 43:52–57 [View Article]
    [Google Scholar]
  2. Garrity GM, Lilburn TG, Cole JR, Harrison SH, Euzeby J et al. Part 10—The bacteria: phylum Actinobacteria: class ‘Actinobacteria’. In The Taxonomic Outline of the Bacteria and Archaea, Release 7.7 2007 pp. 187–219 www.taxonomicoutline.org/index.php/ toba/article/view/2007/187/219
    [Google Scholar]
  3. Maszenan AM, Tay JH, Schumann P, Jiang HL, Tay ST. Quadrisphaera granulorum gen. nov., sp. nov., a Gram-positive polyphosphate-accumulating coccus in tetrads or aggregates isolated from aerobic granules. Int J Syst Evol Microbiol 2005; 55:1771–1777 [View Article][PubMed]
    [Google Scholar]
  4. Pagani H, Parenti F. Kineosporia, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1978; 28:401–406 [View Article]
    [Google Scholar]
  5. Phillips RW, Wiegel J, Berry CJ, Fliermans C, Peacock AD et al. Kineococcus radiotolerans sp. nov., a radiation-resistant, Gram-positive bacterium. Int J Syst Evol Microbiol 2002; 52:933–938 [View Article][PubMed]
    [Google Scholar]
  6. Duangmal K, Thamchaipenet A, Ara I, Matsumoto A, Takahashi Y. Kineococcus gynurae sp. nov., isolated from a Thai medicinal plant. Int J Syst Evol Microbiol 2008; 58:2439–2442 [View Article][PubMed]
    [Google Scholar]
  7. Liu M, Peng F, Wang Y, Zhang K, Chen G et al. Kineococcus xinjiangensis sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 2009; 59:1090–1093 [View Article][PubMed]
    [Google Scholar]
  8. Lee SD. Kineococcus rhizosphaerae sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 2009; 59:2204–2207 [View Article][PubMed]
    [Google Scholar]
  9. Nie GX, Ming H, Zhang J, Feng HG, Li S et al. Kineococcus glutineturens sp. nov., isolated from soil in Yunnan, south-west China. Antonie Van Leeuwenhoek 2012; 102:239–246 [View Article][PubMed]
    [Google Scholar]
  10. Bian GK, Feng ZZ, Qin S, Xing K, Wang Z et al. Kineococcus endophytica sp. nov., a novel endophytic actinomycete isolated from a coastal halophyte in Jiangsu, China. Antonie Van Leeuwenhoek 2012; 102:621–628 [View Article][PubMed]
    [Google Scholar]
  11. Li Q, Li G, Chen X, Xu F, Li Y et al. Kineococcus gypseus sp. nov., isolated from saline sediment. Int J Syst Evol Microbiol 2015; 65:3703–3708 [View Article][PubMed]
    [Google Scholar]
  12. Duangmal K, Muangham S, Mingma R, Yimyai T, Srisuk N et al. Kineococcus mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2015; 66:1230–1235 [View Article][PubMed]
    [Google Scholar]
  13. Kuester E, Williams ST. Selection of media for isolation of Streptomycetes. Nature 1964; 202:928–929[PubMed] [Crossref]
    [Google Scholar]
  14. Tan GY, Ward AC, Goodfellow M. Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Syst Appl Microbiol 2006; 29:557–569 [View Article][PubMed]
    [Google Scholar]
  15. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  16. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960 [Crossref]
    [Google Scholar]
  17. Jiang Y, Tang SK, Wiese J, Xu LH, Imhoff JF et al. Streptomyces hainanensis sp. nov., a novel member of the genus Streptomyces. Int J Syst Evol Microbiol 2007; 57:2694–2698 [View Article][PubMed]
    [Google Scholar]
  18. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  19. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  20. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution:minimum change for aspecific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. Molecular evolutionary geneticsanalysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  27. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strain. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  28. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000; 50:1095–1102 [View Article][PubMed]
    [Google Scholar]
  29. He L, Li W, Huang Y, Wang L, Liu Z et al. Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 2005; 55:1939–1944 [View Article][PubMed]
    [Google Scholar]
  30. Wayne LG, Brenner DJ, Colwell RR et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacterio 1987; 37:463–464 [Crossref]
    [Google Scholar]
  31. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  32. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  33. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol 2009; 59:2025–2032 [View Article][PubMed]
    [Google Scholar]
  34. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  35. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:31–36[PubMed]
    [Google Scholar]
  36. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  37. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas. Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  39. Mesbah M, Premachandran U, Whitman WB. Precise Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002380
Loading
/content/journal/ijsem/10.1099/ijsem.0.002380
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error