1887

Abstract

Two novel actinobacteria, designated YIM 121936 and YIM 121940, were isolated from alkaline sediment in Yuanjiang, China. The cells of the novel strains were Gram-stain-positive, aerobic, motile, non-spore-forming and coccus-shaped. The two strains both contained meso-diaminopimelic acid as the diagnostic diamino acid. The whole-cell sugars were arabinose, galactose, glucose, mannose and ribose. The predominant menaquinone was MK-9(H2). The polar lipid profile of both strains comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, one unknown phosphoglycolipid and five unknown phospholipids. The predominant fatty acids of both strains were anteiso-C15 : 0. The genomic DNA G+C contents of strains YIM 121936 and YIM 121940 were 74.7 and 75.2 %, respectively. Strain YIM 121936 was closely related to Kineococcus aurantiacus IFO 15268 (97.19 %), Kineococcus gypseus YIM 121300 (97.00 %) and Kineococcus mangrovi NBRC 110933 (97.00 %). Strain YIM 121940 was closely related to K. aurantiacus IFO 15268 (97.41 %), Kineococcus endophytica KLBMP 1274 (97.18 %), Kineococcus rhizosphaerae RP-B16 (97.09 %), Kineococcus radiotolerans SRS 30216 (97.09 %), K. gypseus YIM 121300 (97.00 %) and K. mangrovi NBRC 110933 (97.00 %). Strain YIM 121936 shared high 16S rRNA gene sequence similarity (99 %) with YIM 121940. Similarities of two strains with other species of the genus Kineococcus were <97 %. The DNA–DNA hybridization values were below 70 % among all the strains studied. YIM 121936 and YIM 121940 are representatives of two new species in the genus Kineococcus , for which names Kineococcus terreus sp. nov. (type strain YIM 121936=KCTC 39738=DSM 102155) and Kineococcus aureolus sp. nov. (type strain YIM 121940=KCTC 39739=DSM 102158) are proposed, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002380
2017-10-06
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4801.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002380&mimeType=html&fmt=ahah

References

  1. Yokota A, Tamura T, Nishii T, Hasegawa T. Kineococcus aurantiacus gen.nov., sp. nov., a new aerobic, Gram-positive, motile coccus with meso-diaminopimelic acid and arabinogalactan in the cell wall. Int J Syst Bacteriol 1993; 43: 52– 57 [CrossRef]
    [Google Scholar]
  2. Garrity GM, Lilburn TG, Cole JR, Harrison SH, Euzeby J et al. Part 10—The bacteria: phylum Actinobacteria: class ‘Actinobacteria’. In The Taxonomic Outline of the Bacteria and Archaea, Release 7.7 2007; pp. 187– 219 www.taxonomicoutline.org/index.php/ toba/article/view/2007/187/219
    [Google Scholar]
  3. Maszenan AM, Tay JH, Schumann P, Jiang HL, Tay ST. Quadrisphaera granulorum gen. nov., sp. nov., a Gram-positive polyphosphate-accumulating coccus in tetrads or aggregates isolated from aerobic granules. Int J Syst Evol Microbiol 2005; 55: 1771– 1777 [CrossRef] [PubMed]
    [Google Scholar]
  4. Pagani H, Parenti F. Kineosporia, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1978; 28: 401– 406 [CrossRef]
    [Google Scholar]
  5. Phillips RW, Wiegel J, Berry CJ, Fliermans C, Peacock AD et al. Kineococcus radiotolerans sp. nov., a radiation-resistant, Gram-positive bacterium. Int J Syst Evol Microbiol 2002; 52: 933– 938 [CrossRef] [PubMed]
    [Google Scholar]
  6. Duangmal K, Thamchaipenet A, Ara I, Matsumoto A, Takahashi Y. Kineococcus gynurae sp. nov., isolated from a Thai medicinal plant. Int J Syst Evol Microbiol 2008; 58: 2439– 2442 [CrossRef] [PubMed]
    [Google Scholar]
  7. Liu M, Peng F, Wang Y, Zhang K, Chen G et al. Kineococcus xinjiangensis sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 2009; 59: 1090– 1093 [CrossRef] [PubMed]
    [Google Scholar]
  8. Lee SD. Kineococcus rhizosphaerae sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 2009; 59: 2204– 2207 [CrossRef] [PubMed]
    [Google Scholar]
  9. Nie GX, Ming H, Zhang J, Feng HG, Li S et al. Kineococcus glutineturens sp. nov., isolated from soil in Yunnan, south-west China. Antonie Van Leeuwenhoek 2012; 102: 239– 246 [CrossRef] [PubMed]
    [Google Scholar]
  10. Bian GK, Feng ZZ, Qin S, Xing K, Wang Z et al. Kineococcus endophytica sp. nov., a novel endophytic actinomycete isolated from a coastal halophyte in Jiangsu, China. Antonie Van Leeuwenhoek 2012; 102: 621– 628 [CrossRef] [PubMed]
    [Google Scholar]
  11. Li Q, Li G, Chen X, Xu F, Li Y et al. Kineococcus gypseus sp. nov., isolated from saline sediment. Int J Syst Evol Microbiol 2015; 65: 3703– 3708 [CrossRef] [PubMed]
    [Google Scholar]
  12. Duangmal K, Muangham S, Mingma R, Yimyai T, Srisuk N et al. Kineococcus mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2015; 66: 1230– 1235 [CrossRef] [PubMed]
    [Google Scholar]
  13. Kuester E, Williams ST. Selection of media for isolation of Streptomycetes. Nature 1964; 202: 928– 929 [PubMed] [Crossref]
    [Google Scholar]
  14. Tan GY, Ward AC, Goodfellow M. Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Syst Appl Microbiol 2006; 29: 557– 569 [CrossRef] [PubMed]
    [Google Scholar]
  15. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  16. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960; [Crossref]
    [Google Scholar]
  17. Jiang Y, Tang SK, Wiese J, Xu LH, Imhoff JF et al. Streptomyces hainanensis sp. nov., a novel member of the genus Streptomyces. Int J Syst Evol Microbiol 2007; 57: 2694– 2698 [CrossRef] [PubMed]
    [Google Scholar]
  18. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55: 1149– 1153 [CrossRef] [PubMed]
    [Google Scholar]
  19. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  20. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57: 1424– 1428 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution:minimum change for aspecific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. Molecular evolutionary geneticsanalysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  27. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strain. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  28. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000; 50: 1095– 1102 [CrossRef] [PubMed]
    [Google Scholar]
  29. He L, Li W, Huang Y, Wang L, Liu Z et al. Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 2005; 55: 1939– 1944 [CrossRef] [PubMed]
    [Google Scholar]
  30. Wayne LG, Brenner DJ, Colwell RR et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacterio 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  31. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29: 319– 322 [CrossRef]
    [Google Scholar]
  32. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20: 435– 443 [CrossRef]
    [Google Scholar]
  33. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2009; 59: 2025– 2032 [CrossRef] [PubMed]
    [Google Scholar]
  34. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  35. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123: 31– 36 [PubMed]
    [Google Scholar]
  36. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48: 459– 470 [CrossRef]
    [Google Scholar]
  37. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas. Oerskovia and related taxa. J Appl Bacteriol 1979; 47: 87– 95 [CrossRef]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  39. Mesbah M, Premachandran U, Whitman WB. Precise Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002380
Loading
/content/journal/ijsem/10.1099/ijsem.0.002380
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error