1887

Abstract

A Gram-stain-positive, facultatively aerobic and endospore-forming bacterium, designated strain Pch-40, was isolated from a freshwater green alga, . Cells were motile rods with a monotrichous polar flagellum showing catalase- and oxidase-positive reactions. Strain Pch-40 grew at 20–50 °C (optimum, 37–40 °C), at pH 5.0–11.0 (optimum, pH 7.0) and in the presence of 0–4.0 % (w/v) NaCl (optimum, 0 %). Menaquinone-7 was detected as the sole isoprenoid quinone. The genomic DNA G+C content of strain Pch-40 was 55.6 mol%. The major cellular fatty acids of strain Pch-40 were C, iso-C, anteiso-C and anteiso-C. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Pch-40 clearly belonged to the genus of the family . Strain Pch-40 was most closely related to CSE-5610 with a 96.1 % 16S rRNA gene sequence similarity. The phenotypic and chemotaxonomic features and the phylogenetic inference clearly suggested that strain Pch-40 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is strain Pch-40 (=KACC 19279=JCM 32033).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002377
2017-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4767.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002377&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article][PubMed]
    [Google Scholar]
  2. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2010; 60:2284–2287 [View Article][PubMed]
    [Google Scholar]
  3. Cho EA, Lee JS, Lee KC, Jung HC, Pan JG et al. Cohnella laeviribosi sp. nov., isolated from a volcanic pond. Int J Syst Evol Microbiol 2007; 57:2902–2907 [View Article][PubMed]
    [Google Scholar]
  4. García-Fraile P, Velázquez E, Mateos PF, Martínez-Molina E, Rivas R. Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella . Int J Syst Evol Microbiol 2008; 58:1855–1859 [View Article][PubMed]
    [Google Scholar]
  5. Yoon MH, Ten LN, Im WT. Cohnella panacarvi sp. nov., a xylanolytic bacterium isolated from ginseng cultivating soil. J Microbiol Biotechnol 2007; 17:913–918[PubMed]
    [Google Scholar]
  6. Choi JH, Seok JH, Jang HJ, Cha JH, Cha CJ. Cohnella saccharovorans sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2016; 66:1713–1717 [View Article][PubMed]
    [Google Scholar]
  7. Lee KC, Kim KK, Kim JS, Kim DS, Ko SH et al. Cohnella collisoli sp. nov., isolated from lava forest soil. Int J Syst Evol Microbiol 2015; 65:3125–3130 [View Article][PubMed]
    [Google Scholar]
  8. Huang Z, Yu YJ, Bao YY, Xia L, Sheng XF et al. Cohnella nanjingensis sp. nov., an extracellular polysaccharide-producing bacterium isolated from soil. Int J Syst Evol Microbiol 2014; 64:3320–3324 [View Article][PubMed]
    [Google Scholar]
  9. Shiratori H, Tagami Y, Beppu T, Ueda K. Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol 2010; 60:1344–1348 [View Article][PubMed]
    [Google Scholar]
  10. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. Int J Syst Evol Microbiol 2012; 62:1921–1925 [View Article][PubMed]
    [Google Scholar]
  11. Hameed A, Hung MH, Lin SY, Hsu YH, Liu YC et al. Cohnella formosensis sp. nov., a xylanolytic bacterium isolated from the rhizosphere of Medicago sativa L. Int J Syst Evol Microbiol 2013; 63:2806–2812 [View Article][PubMed]
    [Google Scholar]
  12. Kämpfer P, Glaeser SP, Mcinroy JA, Busse HJ. Cohnella rhizosphaerae sp. nov., isolated from the rhizosphere environment of Zea mays . Int J Syst Evol Microbiol 2014; 64:1811–1816 [View Article][PubMed]
    [Google Scholar]
  13. Kämpfer P, Glaeser SP, Busse HJ. Cohnella lubricantis sp. nov., isolated from a coolant lubricant solution. Int J Syst Evol Microbiol 2017; 67:466–4471 [View Article][PubMed]
    [Google Scholar]
  14. Kazamia E, Czesnick H, Nguyen TT, Croft MT, Sherwood E et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 2012; 14:1466–1476 [View Article][PubMed]
    [Google Scholar]
  15. Kouzuma A, Watanabe K. Exploring the potential of algae/bacteria interactions. Curr Opin Biotechnol 2015; 33:125–129 [View Article][PubMed]
    [Google Scholar]
  16. Jeong SE, Jeon SH, Chun BH, Kim DW, Jeon CO. Marinicauda algicola sp. nov., isolated from a marine red alga Rhodosorus marinus . Int J Syst Evol Microbiol 2017; 67:3423–3427 [View Article][PubMed]
    [Google Scholar]
  17. Jeong SE, Kim KH, Baek K, Jeon CO. Parasphingopyxis algicola sp. nov., isolated from a marine red alga Asparagopsis taxiformis and emended description of the genus Parasphingopyxis Uchida et al. 2012. Int J Syst Evol Microbiol 2017; 67: doi:10.1099/ijsem.0.002215 [View Article][PubMed]
    [Google Scholar]
  18. Lee HJ, Jeong SE, Cho MS, Kim S, Lee SS et al. Flavihumibacter solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2014; 64:2897–2901 [View Article][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  20. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3:e56 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Phylip (Phylogeny Inference Package), Version 3.6a Seattle: Department of genetics, University of Washington, Seattle, WA, USA 2002
    [Google Scholar]
  22. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  23. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  24. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  25. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–208 [Crossref]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773[PubMed] [Crossref]
    [Google Scholar]
  28. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002377
Loading
/content/journal/ijsem/10.1099/ijsem.0.002377
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error