1887

Abstract

A Gram-stain-negative, non-spore-forming, non-motile and coccoid, ovoid or short rod-shaped bacterial strain, designated GHD-05, was isolated from a tidal flat on the Yellow Sea in South Korea. Strain GHD-05 grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences showed that strain GHD-05 belonged to the genus , clustering with the type strain of . Strain GHD-05 exhibited 16S rRNA gene sequence similarity values of 97.0–99.1 % to the type strains of , , and , and of 94.2–96.9 % to the type strains of the other species. Strain GHD-05 contained Q-10 as the predominant ubiquinone and C 7 as the major fatty acid. The major polar lipids detected in strain GHD-05 were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid and one unidentified glycolipid. The DNA G+C content of strain GHD-05 was 64.1 mol% and its DNA–DNA relatedness values with the type strains of , , and were 13–32 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain GHD-05 is separated from recognized species. On the basis of the data presented here, strain GHD-05 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GHD-05 (=KCTC 52978=NBRC 112902).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002373
2017-11-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4760.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002373&mimeType=html&fmt=ahah

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969;19:375–390 [CrossRef]
    [Google Scholar]
  2. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000;50:1563–1589 [CrossRef][PubMed]
    [Google Scholar]
  4. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005;55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  5. Nokhal T-H, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983;33:26–37 [CrossRef]
    [Google Scholar]
  6. Liu XY, Wang BJ, Jiang CY, Liu SJ. Paracoccus sulfuroxidans sp. nov., a sulfur oxidizer from activated sludge. Int J Syst Evol Microbiol 2006;56:2693–2695 [CrossRef][PubMed]
    [Google Scholar]
  7. Liu ZP, Wang BJ, Liu XY, Dai X, Liu YH et al. Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 2008;58:257–261 [CrossRef][PubMed]
    [Google Scholar]
  8. Khan ST, Takaichi S, Harayama S. Paracoccus marinus sp. nov., an adonixanthin diglucoside-producing bacterium isolated from coastal seawater in Tokyo Bay. Int J Syst Evol Microbiol 2008;58:383–386 [CrossRef][PubMed]
    [Google Scholar]
  9. Li HF, Qu JH, Yang JS, Li ZJ, Yuan HL. Paracoccus chinensis sp. nov., isolated from sediment of a reservoir. Int J Syst Evol Microbiol 2009;59:2670–2674 [CrossRef][PubMed]
    [Google Scholar]
  10. Roh SW, Nam YD, Chang HW, Kim KH, Kim MS et al. Paracoccus aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2009;59:790–794 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim YO, Kong HJ, Park S, Kang SJ, Kim KK et al. Paracoccus fistulariae sp. nov., a lipolytic bacterium isolated from bluespotted cornetfish, Fistularia commersonii. Int J Syst Evol Microbiol 2010;60:2908–2912 [CrossRef][PubMed]
    [Google Scholar]
  12. Sheu SY, Jiang SR, Chen CA, Wang JT, Chen WM. Paracoccus stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata. Int J Syst Evol Microbiol 2011;61:2221–2226 [CrossRef][PubMed]
    [Google Scholar]
  13. Lee MJ, Lee SS. Paracoccus limosus sp. nov., isolated from activated sludge in a sewage treatment plant. Int J Syst Evol Microbiol 2013;63:1311–1316 [CrossRef][PubMed]
    [Google Scholar]
  14. Zhang G, Yang Y, Yin X, Wang S. Paracoccus pacificus sp. nov., isolated from the Western Pacific Ocean. Antonie van Leeuwenhoek 2014;106:725–731 [CrossRef][PubMed]
    [Google Scholar]
  15. Nguyen NL, Kim YJ, Hoang VA, Tran BT, Pham HS et al. Paracoccus panacisoli sp. nov., isolated from a forest soil cultivated with Vietnamese ginseng. Int J Syst Evol Microbiol 2015;65:1491–1497 [CrossRef][PubMed]
    [Google Scholar]
  16. Dominguez-Moñino I, Jurado V, Hermosin B, Saiz-Jimenez C. Paracoccus cavernae sp. nov., isolated from a show cave. Int J Syst Evol Microbiol 2016;66:2265–2270 [CrossRef][PubMed]
    [Google Scholar]
  17. Zhang S, Gan L, Qin Q, Long X, Zhang Y et al. Paracoccusacridae sp. nov., isolated from the insect Acrida cinerea living in deserted cropland. Int J Syst Evol Microbiol 2016;66:3492–3497 [CrossRef][PubMed]
    [Google Scholar]
  18. Kämpfer P, Aurass P, Karste S, Flieger A, Glaeser SP. Paracoccus contaminans sp. nov., isolated from a contaminated water microcosm. Int J Syst Evol Microbiol 2016;66:5101–5105 [CrossRef][PubMed]
    [Google Scholar]
  19. Park S, Yoon SY, Jung YT, Won SM, Park DS et al. Paracoccus aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66:2992–2998 [CrossRef][PubMed]
    [Google Scholar]
  20. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2969–2974 [CrossRef][PubMed]
    [Google Scholar]
  21. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  22. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  23. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993;[Crossref]
    [Google Scholar]
  24. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  25. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer; 1981; pp.1302–1331
    [Google Scholar]
  26. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957;49:25–68 [CrossRef][PubMed]
    [Google Scholar]
  27. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968;95:1921–1942[PubMed]
    [Google Scholar]
  28. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996;46:502–505 [CrossRef]
    [Google Scholar]
  29. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-Amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997;47:111–114 [CrossRef]
    [Google Scholar]
  30. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH et al. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003;53:53–57 [CrossRef][PubMed]
    [Google Scholar]
  31. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  32. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[Crossref]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  35. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp.121–161
    [Google Scholar]
  36. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  37. Kelly DP, Rainey FA, Wood AP. The genus Paracoccus. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes, 3rd ed.vol.5 New York: Springer; 2006; pp.232–249[Crossref]
    [Google Scholar]
  38. Jung YT, Park S, Lee JS, Yoon JH. Paracoccus lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2763–2769 [CrossRef][PubMed]
    [Google Scholar]
  39. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  40. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  41. Nakamura A. Paracoccus laeviglucosivorans sp. nov., an l-glucose-utilizing bacterium isolated from soil. Int J Syst Evol Microbiol 2015;65:3878–3884 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002373
Loading
/content/journal/ijsem/10.1099/ijsem.0.002373
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error