1887

Abstract

A new betaproteobacterium, CGI-09, was isolated from an activated sludge bioreactor which treated landfill leachate. Based on 16S rRNA gene sequence analysis, the new strain shared the highest pairwise similarity values with members of the order Burkholderiales : Derxia gummosa IAM 13946 (family Alcaligenaceae ), 93.7 % and Lautropia mirabilis DSM 11362 (family Burkholderiaceae ), 93.6 %. Cells of strain CGI-09 were rod-shaped and non-motile. The new strain was oxidase and catalase positive and capable of reducing nitrate to nitrite. The predominant fatty acids were C16 : 1 ω7c, C16 : 0, cycloC17 : 0 and C18 : 1 ω7c, the major respiratory quinone was Q-8, and the detected polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid. The G+C content of the genomic DNA of strain CGI-09 was 70.2 mol%. The new bacterium can be distinguished from the members of genera Derxia and Lautropia based on its non-motile cells, arginine dihydrolase activity, its high cyclo C17 : 0 fatty acid content and the lack of hydroxy fatty acids. On the basis of the phenotypic, chemotaxonomic and molecular data, strain CGI-09 is considered to represent a new genus and species within the family Burkholderiaceae , for which the name Quisquiliibacterium transsilvanicum gen. nov., sp. nov. is proposed. The type strain is CGI-09 (=DSM 29781=JCM 31785).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002368
2017-09-27
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4742.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002368&mimeType=html&fmt=ahah

References

  1. Cydzik-Kwiatkowska A, Zielińska M. Bacterial communities in full-scale wastewater treatment systems. World J Microbiol Biotechnol 2016;32:66 [CrossRef][PubMed]
    [Google Scholar]
  2. Saunders AM, Albertsen M, Vollertsen J, Nielsen PH. The activated sludge ecosystem contains a core community of abundant organisms. ISME J 2016;10:11–20 [CrossRef][PubMed]
    [Google Scholar]
  3. Zhu S, Wu H, Wei C, Zhou L, Xie J. Contrasting microbial community composition and function perspective in sections of a full-scale coking wastewater treatment system. Appl Microbiol Biotechnol 2016;100:949–960 [CrossRef][PubMed]
    [Google Scholar]
  4. Felföldi T, Kovács E, Fikó DR, Tankó G, Szabó A et al. Unconventional strategies for the cultivation of new bacterial strains from aquatic environments. Acta Microbiol Immunol Hung 2015;62:150–151
    [Google Scholar]
  5. Felföldi T, Mentes A, Schumann P, Kéki Z, Máthé I et al. Rufibacter quisquiliarum sp. nov., a new member of the phylum Bacteroidetes isolated from a bioreactor treating landfill leachate. Int J Syst Evol Microbiol 2016;66:5150–5154 [CrossRef][PubMed]
    [Google Scholar]
  6. Felföldi T, Schumann P, Mentes A, Kéki Z, Máthé I et al. Caenimicrobium hargitense gen. nov., sp. nov., a new member of the family Alcaligenaceae (Betaproteobacteria) isolated from activated sludge. Int J Syst Evol Microbiol 2017;67:627–632 [CrossRef][PubMed]
    [Google Scholar]
  7. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992;8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  8. Heimbrook ME, Wang WL, Campbell G. Staining bacterial flagella easily. J Clin Microbiol 1989;27:2612–2615[PubMed]
    [Google Scholar]
  9. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982;16:772–774[PubMed]
    [Google Scholar]
  10. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria, 2nd ed. Cambridge: Cambridge University Press; 1974
    [Google Scholar]
  11. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 1953;66:24–26[PubMed]
    [Google Scholar]
  12. Felföldi T, Kéki Z, Sipos R, Márialigeti K, Tindall BJ et al. Ottowia pentelensis sp. nov., a floc-forming betaproteobacterium isolated from an activated sludge system treating coke plant effluent. Int J Syst Evol Microbiol 2011;61:2146–2150 [CrossRef][PubMed]
    [Google Scholar]
  13. Máthé I, Borsodi AK, Tóth EM, Felföldi T, Jurecska L et al. Vertical physico-chemical gradients with distinct microbial communities in the hypersaline and heliothermal Lake Ursu (Sovata, Romania). Extremophiles 2014;18:501–514 [CrossRef][PubMed]
    [Google Scholar]
  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  15. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000;7:203–214 [CrossRef][PubMed]
    [Google Scholar]
  16. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  18. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  19. Yilmaz P, Yarza P, Rapp JZ, Glöckner FO. Expanding the world of marine bacterial and archaeal clades. Front Microbiol 2015;6:1524 [CrossRef][PubMed]
    [Google Scholar]
  20. Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F et al. The Prokaryotes, Alphaproteobacteria and Betaproteobacteria, 4th ed. Berlin: Springer-Verlag; 2014
    [Google Scholar]
  21. Brenner DJ, Krieg NR, Staley JT. Bergey’s Manual of Systematic Bacteriology, The Proteobacteria, 2nd ed. New York: Springer; 2005
    [Google Scholar]
  22. Chen WM, Huang WC, Sheu SY. Derxia lacustris sp. nov., a nitrogen-fixing bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 2013;63:965–970 [CrossRef][PubMed]
    [Google Scholar]
  23. Jennsen HL, Petersen EJ, de PK, Bhattacharya R. A new nitrogen-fixing bacterium: Derxia gummosa nov. gen. nov. spec. Arch Mikrobiol 1960;36:182–195 [CrossRef][PubMed]
    [Google Scholar]
  24. Gerner-Smidt P, Keiser-Nielsen H, Dorsch M, Stackebrandt E, Ursing J et al. Lautropia mirabilis gen. nov., sp. nov., a gram-negative motile coccus with unusual morphology isolated from the human mouth. Microbiology 1994;140:1787–1797 [CrossRef][PubMed]
    [Google Scholar]
  25. Rossmann SN, Wilson PH, Hicks J, Carter B, Cron SG et al. Isolation of Lautropia mirabilis from oral cavities of human immunodeficiency virus-infected children. J Clin Microbiol 1998;36:1756–1760[PubMed]
    [Google Scholar]
  26. Lin SY, Hameed A, Arun AB, Liu YC, Hsu YH et al. Description of Noviherbaspirillum malthae gen. nov., sp. nov., isolated from an oil-contaminated soil, and proposal to reclassify Herbaspirillum soli, Herbaspirillum aurantiacum, Herbaspirillum canariense and Herbaspirillum psychrotolerans as Noviherbaspirillum soli comb. nov., Noviherbaspirillum aurantiacum comb. nov., Noviherbaspirillum canariense comb. nov. and Noviherbaspirillum psychrotolerans comb. nov. based on polyphasic analysis. Int J Syst Evol Microbiol 2013;63:4100–4107 [CrossRef][PubMed]
    [Google Scholar]
  27. Sundararaman A, Srinivasan S, Lee SS. Noviherbaspirillum humi sp. nov., isolated from soil. Antonie van Leeuwenhoek 2016;109:697–704 [CrossRef][PubMed]
    [Google Scholar]
  28. Chaudhary DK, Kim J. Noviherbaspirillum agri sp. nov., isolated from reclaimed grassland soil, and reclassification of Herbaspirillum massiliense (Lagier et al., 2014) as Noviherbaspirillum massiliense comb. nov. Int J Syst Evol Microbiol 2017;67:1508–1515 [CrossRef][PubMed]
    [Google Scholar]
  29. Kim SJ, Moon JY, Weon HY, Hong SB, Seok SJ et al. Noviherbaspirillum suwonense sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2014;64:1552–1558 [CrossRef][PubMed]
    [Google Scholar]
  30. Carro L, Rivas R, León-Barrios M, González-Tirante M, Velázquez E et al. Herbaspirillum canariense sp. nov., Herbaspirillum aurantiacum sp. nov. and Herbaspirillum soli sp. nov., isolated from volcanic mountain soil, and emended description of the genus Herbaspirillum. Int J Syst Evol Microbiol 2012;62:1300–1306 [CrossRef][PubMed]
    [Google Scholar]
  31. Blümel S, Mark B, Busse HJ, Kämpfer P, Stolz A. Pigmentiphaga kullae gen. nov., sp. nov., a novel member of the family Alcaligenaceae with the ability to decolorize azo dyes aerobically. Int J Syst Evol Microbiol 2001;51:1867–1871 [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon JH, Kang SJ, Kim W, Oh TK. Pigmentiphaga daeguensis sp. nov., isolated from wastewater of a dye works, and emended description of the genus Pigmentiphaga. Int J Syst Evol Microbiol 2007;57:1188–1191 [CrossRef][PubMed]
    [Google Scholar]
  33. Chen YG, Zhang YQ, Huang K, Tang SK, Cao Y et al. Pigmentiphaga litoralis sp. nov., a facultatively anaerobic bacterium isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2009;59:521–525 [CrossRef][PubMed]
    [Google Scholar]
  34. Lee JJ, Srinivasan S, Kim MK. Pigmentiphaga soli sp. nov., a bacterium isolated from soil. J Microbiol 2011;49:857–861 [CrossRef][PubMed]
    [Google Scholar]
  35. Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Germany April 2017; Prokaryotic Nomenclature Up-to-date. www.dsmz.de/bacterial-diversity/prokaryotic-nomenclature-up-to-date
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002368
Loading
/content/journal/ijsem/10.1099/ijsem.0.002368
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error