1887

Abstract

An anaerobic alkaliphilic, proteolytic bacterium, strain Su22, was isolated from the bottom sediment of the alkaline low mineralization lake Sulphatnoe (Selenginsky district, Buryatia, Russia). A comparative analysis of the 16S rRNA gene sequence revealed that this bacterium was closely related to Anoxynatronum sibiricum Z-7981 with a similarity of 98.1 %. Strain Su22 differed from A. sibiricum Z-7981 in its inability to use carbohydrates, peptone and amino acids as carbon sources. Strain Su22 grew over a temperature range of 20–40 °C with an optimum at 30 °C and within the pH range 7.4–11.0 with an optimum at pH 9.6. Sodium cations stimulated the growth of the strain considerably with an optimal concentration at 0.76–1.09 M. The whole-cell fatty acid profile included C16 : 1ω7c, C16 : 0 and C16 : 0 ALDE. The G+C content was 46.1 mol%. Based on the DNA–DNA hybridization level (53.2 %) and phenotypical differences between strains Su22 and Z-7981, the new isolate is thus considered to represent a novel species, for which the name Anoxynatronum buryatiense sp. nov. is proposed. The type strain is Su22 (=VKM B-2510=CECT 8731).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002365
2017-10-06
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4704.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002365&mimeType=html&fmt=ahah

References

  1. Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM et al. Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 2001;51:1245–1256 [CrossRef][PubMed]
    [Google Scholar]
  2. Zhilina TN, Zavarzina DG, Kolganova TV, Lysenko AM, Tourova TP et al. Alkaliphilus peptidofermentans nov., a new alkaliphilic bacterial soda lake isolate capable of peptide fermentation and Fe(III) reduction. Microbiologiya 2009;78:445–454
    [Google Scholar]
  3. Pikuta EV, Itoh T, Krader P, Tang J, Whitman WB et al. Anaerovirgula multivorans gen. nov., sp. nov., a novel spore-forming, alkaliphilic anaerobe isolated from Owens Lake, California, USA. Int J Syst Evol Microbiol 2006;56:2623–2629 [CrossRef][PubMed]
    [Google Scholar]
  4. Garnova ES, Zhilina TN, Tourova TP, Lysenko AM. Anoxynatronum sibiricum gen. nov., sp. nov. alkaliphilic saccharolytic anaerobe from cellulolytic community of nizhnee beloe (Transbaikal region). Extremophiles 2003;7:213–220 [CrossRef][PubMed]
    [Google Scholar]
  5. Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J. Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 2007;57:2507–2512 [CrossRef][PubMed]
    [Google Scholar]
  6. Zhilina TN, Detkova EN, Rainey FA, Osipov GA, Lysenko AM et al. Natronoincola histidinovorans gen. nov., sp. nov., a new alkaliphilic acetogenic anaerobe. Curr Microbiol 1998;37:177–185 [CrossRef][PubMed]
    [Google Scholar]
  7. Zhilina TN, Zavarzina DG, Osipov GA, Kostrikina NA, Tourova TP. Natronincola ferrireducens sp. nov., and Natronincola peptidovorans sp. nov., new anaerobic alkaliphilic peptolytic iron-reducing bacteria isolated from soda lakes. Microbiology 2009;78:455–467 [CrossRef]
    [Google Scholar]
  8. Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB et al. Spirochaeta dissipatitropha sp. nov., an alkaliphilic, obligately anaerobic bacterium, and emended description of the genus Spirochaeta Ehrenberg 1835. Int J Syst Evol Microbiol 2009;59:1798–1804 [CrossRef][PubMed]
    [Google Scholar]
  9. Kevbrin V, Boltyanskaya Y, Garnova E, Wiegel J. Anaerobranca zavarzinii sp. nov., an anaerobic, alkalithermophilic bacterium isolated from Kamchatka thermal fields. Int J Syst Evol Microbiol 2008;58:1486–1491 [CrossRef][PubMed]
    [Google Scholar]
  10. Kevbrin VV, Zhilina TN, Rainey FA, Zavarzin GA. Tindallia magadii gen. nov., sp. nov.: an alkaliphilic anaerobic ammonifier from soda lake deposits. Curr Microbiol 1998;37:94–100 [CrossRef][PubMed]
    [Google Scholar]
  11. Pikuta EV, Hoover RB, Bej AK, Marsic D, Detkova EN et al. Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California. Extremophiles 2003;7:327–334 [CrossRef][PubMed]
    [Google Scholar]
  12. Alazard D, Badillo C, Fardeau ML, Cayol JL, Thomas P et al. Tindallia texcoconensis sp. nov., a new haloalkaliphilic bacterium isolated from lake Texcoco, Mexico. Extremophiles 2007;11:33–39 [CrossRef][PubMed]
    [Google Scholar]
  13. Kevbrin V, Boltyanskaya Y, Zhilina T, Kolganova T, Lavrentjeva E et al. Proteinivorax tanatarense gen. nov., sp. nov., an anaerobic, haloalkaliphilic, proteolytic bacterium isolated from a decaying algal bloom, and proposal of Proteinivoraceae fam. nov. Extremophiles 2013;17:747–756 [CrossRef][PubMed]
    [Google Scholar]
  14. Boltyanskaya YV, Kevbrin VV. Trophic interactions of proteolytic bacteria Proteinivorax tanatarense in an alkaliphilic microbial community. Microbiology 2016;85:481–487 [CrossRef]
    [Google Scholar]
  15. Ryzhmanova Y, Nepomnyashchaya Y, Abashina T, Ariskina E, Troshina O et al. New sulfate-reducing bacteria isolated from Buryatian alkaline brackish lakes: description of Desulfonatronum buryatense sp. nov. Extremophiles 2013;17:851–859 [CrossRef][PubMed]
    [Google Scholar]
  16. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  17. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematic Chichester: Wiley Press; 1991; pp.115–177
    [Google Scholar]
  18. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  19. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF. GenBank. Nucleic Acids Res 1998;26:1–7 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  23. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  24. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  25. Smibert R, Krieg N. Phenotypic characterization. In Gerhardt P, Murrey R, Wood W, Krieg N. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  26. Shcherbakova VA, Chuvilskaya NA, Rivkina EM, Pecheritsyna SA, Laurinavichius KS et al. Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. Extremophiles 2005;9:239–246 [CrossRef][PubMed]
    [Google Scholar]
  27. Lovley DR, Phillips EJ. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river. Appl Environ Microbiol 1986;52:751–757[PubMed]
    [Google Scholar]
  28. Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 1969;14:454–458 [CrossRef]
    [Google Scholar]
  29. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  30. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  31. Sorokin DY, Kuenen JG, Muyzer G. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2011;2:article 44 [CrossRef][PubMed]
    [Google Scholar]
  32. Sorokin DY, Rusanov II, Pimenov NV, Tourova TP, Abbas B et al. Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol 2010;73:278–290 [CrossRef]
    [Google Scholar]
  33. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014;18:791–809 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002365
Loading
/content/journal/ijsem/10.1099/ijsem.0.002365
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error