1887

Abstract

Two moderately halophilic marine bacterial strains of the family Rhodobacteraceae , designated ZGT108 and ZGT118, were isolated from the brine–seawater interface at Erba Deep in the Red Sea (Saudi Arabia). Cells of both strains were aerobic, rod-shaped, non-motile, and Gram-stain-negative. The sequence similarity of the 16S rRNA genes of strains ZGT108 and ZGT118 was 94.9 %. The highest 16S rRNA gene sequence similarity of strain ZGT108 to its closest relative, Ruegeria conchae JCM 17315, was 98.9 %, while the 16S rRNA gene of ZGT118 was most closely related to that of Ruegeria intermedia LMG 25539 (97.7 % similarity). The sizes of the draft genomes as presented here are 4 258 055 bp (strain ZGT108) and 4 012 109 bp (strain ZGT118), and the G+C contents of the draft genomes are 56.68 mol% (ZGT108) and 62.94 mol% (ZGT108). The combined physiological, biochemical, phylogenetic and genotypic data supported placement of both strains in the genus Ruegeria and indicated that the two strains are distinct from each other as well as from all other members in the genus Ruegeria . This was also confirmed by low DNA–DNA hybridization values (<43.6 %) and low ANI values (<91.8 %) between both strains and the most closely related Ruegeria species. Therefore, we propose two novel species in the genus Ruegeria to accommodate these novel isolates: Ruegeria profundi sp. nov. (type strain ZGT108=JCM 19518=ACCC 19861) and Ruegeria marisrubri sp. nov. (type strain ZGT118=JCM 19519=ACCC 19862).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002344
2017-10-12
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4624.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002344&mimeType=html&fmt=ahah

References

  1. Uchino Y, Hirata A, Yokota A, Sugiyama J. Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 1998; 44: 201– 210 [CrossRef] [PubMed]
    [Google Scholar]
  2. Rüger HJ, Höfle MG. Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 1992; 42: 133– 143 [CrossRef] [PubMed]
    [Google Scholar]
  3. Arahal DR, Macián MC, Garay E, Pujalte MJ. Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol 2005; 55: 2371– 2376 [CrossRef] [PubMed]
    [Google Scholar]
  4. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 2006; 56: 1293– 1304 [CrossRef] [PubMed]
    [Google Scholar]
  5. Yi H, Lim YW, Chun J. Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 2007; 57: 815– 819 [CrossRef] [PubMed]
    [Google Scholar]
  6. Muramatsu Y, Uchino Y, Kasai H, Suzuki K, Nakagawa Y. Ruegeria mobilis sp. nov., a member of the Alphaproteobacteria isolated in Japan and Palau. Int J Syst Evol Microbiol 2007; 57: 1304– 1309 [CrossRef] [PubMed]
    [Google Scholar]
  7. Lee K, Choo YJ, Giovannoni SJ, Cho JC. Ruegeria pelagia sp. nov., isolated from the Sargasso Sea, Atlantic Ocean. Int J Syst Evol Microbiol 2007; 57: 1815– 1818 [CrossRef] [PubMed]
    [Google Scholar]
  8. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Faimali M et al. Ruegeria scottomollicae sp. nov., isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 2008; 58: 2726– 2733 [CrossRef] [PubMed]
    [Google Scholar]
  9. Oh KH, Jung YT, Oh TK, Yoon JH. Ruegeria faecimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2011; 61: 1182– 1188 [CrossRef] [PubMed]
    [Google Scholar]
  10. Huo YY, Xu XW, Li X, Liu C, Cui HL et al. Ruegeria marina sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61: 347– 350 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim YO, Park S, Nam BH, Kang SJ, Hur YB et al. Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi. Int J Syst Evol Microbiol 2012; 62: 925– 930 [CrossRef] [PubMed]
    [Google Scholar]
  12. Lee J, Whon TW, Shin NR, Roh SW, Kim J et al. Ruegeria conchae sp. nov., isolated from the ark clam Scapharca broughtonii. Int J Syst Evol Microbiol 2012; 62: 2851– 2857 [CrossRef] [PubMed]
    [Google Scholar]
  13. Park S, Yoon JH. Ruegeria arenilitoris sp. nov., isolated from the seashore sand around a seaweed farm. Antonie van Leeuwenhoek 2012; 102: 581– 589 [CrossRef] [PubMed]
    [Google Scholar]
  14. Kämpfer P, Arun AB, Rekha PD, Busse HJ, Young CC et al. Ruegeria intermedia sp. nov., a moderately thermophilic bacterium isolated from a coastal hot spring. Int J Syst Evol Microbiol 2013; 63: 2538– 2544 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim YO, Park S, Nam BH, Jung YT, Kim DG et al. Ruegeria meonggei sp. nov., an alphaproteobacterium isolated from ascidian Halocynthia roretzi. Antonie van Leeuwenhoek 2014; 105: 551– 558 [CrossRef] [PubMed]
    [Google Scholar]
  16. Lai Q, Yuan J, Li F, Zheng T, Shao Z. Ruegeria pelagia is a later heterotypic synonym of Ruegeria mobilis. Int J Syst Evol Microbiol 2010; 60: 1918– 1920 [CrossRef] [PubMed]
    [Google Scholar]
  17. Petursdottir SK, Kristjansson JK. Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1997; 1: 94– 99 [CrossRef] [PubMed]
    [Google Scholar]
  18. Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PW et al. Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 2006; 440: 203– 207 [CrossRef] [PubMed]
    [Google Scholar]
  19. Zhang GS, Haroon MF, Zhang RF, Dong XY, Liu D et al. Ponticoccus marisrubri sp. nov., a moderately halophilic marine bacterium of the family Rhodobacteraceae. Int J Syst Evol Microbiol 2017; doi:10.1099/ijsem.0.002280
    [Google Scholar]
  20. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General, Molecular Bacteriology Washington, DC, USA: ASM Press; 1994; pp. 607– 654
    [Google Scholar]
  21. Dong XZ, Cai MY. Determination of biochemical characteristics. In: Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp. 370– 398
    [Google Scholar]
  22. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997; 41: 2738– 2741 [PubMed]
    [Google Scholar]
  23. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011; 27: 863– 864 [CrossRef] [PubMed]
    [Google Scholar]
  24. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24: 713– 714 [CrossRef] [PubMed]
    [Google Scholar]
  25. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20: 265– 272 [CrossRef] [PubMed]
    [Google Scholar]
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25: 1043– 1055 [CrossRef] [PubMed]
    [Google Scholar]
  27. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23: 673– 679 [CrossRef] [PubMed]
    [Google Scholar]
  28. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35: 3100– 3108 [CrossRef] [PubMed]
    [Google Scholar]
  29. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25: 955– 964 [CrossRef] [PubMed]
    [Google Scholar]
  30. De Ley J. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 1970; 101: 738– 754 [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64: 352– 356 [CrossRef] [PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  33. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5: R12 [CrossRef] [PubMed]
    [Google Scholar]
  34. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  36. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101. Newark DE, USA: MIDI Inc; 1990
    [Google Scholar]
  38. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911– 917 [CrossRef] [PubMed]
    [Google Scholar]
  39. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC, USA: ASM Press; 2007; pp. 330– 393
    [Google Scholar]
  40. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  41. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS et al. Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 1991; 41: 582– 587 [CrossRef]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  43. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  44. Li AH, Zhou YG. Frigidibacter albus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from lake water. Int J Syst Evol Microbiol 2015; 65: 1199– 1206 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002344
Loading
/content/journal/ijsem/10.1099/ijsem.0.002344
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error