1887

Abstract

Strains of a Gram-stain-negative, rod-shaped and immotile bacterium were isolated from broiler chicken caecal content. The isolates required strict anaerobic conditions for growth, formed spores, were catalase-positive and oxidase-negative. They produced butyrate as the major metabolic end product in reinforced clostridial medium broth. The genomic DNA G+C content of the isolated strains was 32.5–34.6 mol%. The major cellular fatty acids were C16 : 0 FAME, C14 : 0 FAME, C19 : 0CYC 9,10DMA and C16 : 0DMA. The fatty acid composition of the cell wall showed no similarity to any strain in the midi database. 16S rRNA gene sequence analysis showed that the nearest phylogenetic neighbours were Anaerostipes hadrus and Clostridium populeti (92 % sequence similarity) within Clostridium cluster XIVa of the phylum Firmicutes . Therefore, a novel genus is proposed, with the name Caecibacterium sporoformans gen. nov., sp. nov. The type strain of Caecibacterium sporoformans is LMG 27730=DSM 26959.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002338
2017-09-27
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4589.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002338&mimeType=html&fmt=ahah

References

  1. Salanitro JP, Fairchilds IG, Zgornicki YD. Isolation, culture characteristics, and identification of anaerobic bacteria from the chicken cecum. Appl Microbiol 1974;27:678–687[PubMed]
    [Google Scholar]
  2. Zhu XY, Zhong T, Pandya Y, Joerger RD. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl Environ Microbiol 2002;68:124–137 [CrossRef][PubMed]
    [Google Scholar]
  3. Apajalahti J, Kettunen A, Graham H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult Sci J 2004;60:223–232 [CrossRef]
    [Google Scholar]
  4. Bjerrum L, Pedersen AB, Engberg RM. The influence of whole wheat feeding on Salmonella infection and gut flora composition in broilers. Avian Dis 2005;49:9–15 [CrossRef][PubMed]
    [Google Scholar]
  5. Lan PT, Hayashi H, Sakamoto M, Benno Y. Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries. Microbiol Immunol 2002;46:371–382 [CrossRef][PubMed]
    [Google Scholar]
  6. Barnes EM. The avian intestinal flora with particular reference to the possible ecological significance of the cecal anaerobic bacteria. Am J Clin Nutr Review 1972;25:1475–1479
    [Google Scholar]
  7. Fuller R. Microbial activity in the alimentary tract of birds. Proc Nutr Soc 1984;43:55–61 [CrossRef][PubMed]
    [Google Scholar]
  8. Elam JF, Jacobs RL, Fowler J, Couch JR. Effect of dietary Clostridia upon growth-promoting responses of penicillin. Proc Soc Exp Biol Med 1954;85:645–648 [CrossRef][PubMed]
    [Google Scholar]
  9. Yutin N, Galperin MY. A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environ Microbiol 2013;15:2631–2641 [CrossRef][PubMed]
    [Google Scholar]
  10. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994;44:812–826 [CrossRef][PubMed]
    [Google Scholar]
  11. Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 2014;6:703–713 [CrossRef][PubMed]
    [Google Scholar]
  12. Barcelo A, Claustre J, Moro F, Chayvialle JA, Cuber JC et al. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 2000;46:218–224 [CrossRef][PubMed]
    [Google Scholar]
  13. Van Immerseel F, Boyen F, Gantois I, Timbermont L, Bohez L et al. Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry. Poult Sci 2005;84:1851–1856 [CrossRef][PubMed]
    [Google Scholar]
  14. Eeckhaut V, Van Immerseel F, Croubels S, de Baere S, Haesebrouck F et al. Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum. Microb Biotechnol 2011;4:503–512 [CrossRef][PubMed]
    [Google Scholar]
  15. De Maesschalck C, Van Immerseel F, Eeckhaut V, De Baere S, Cnockaert M et al. Faecalicoccus acidiformans gen. nov., sp. nov., isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae. Int J Syst Evol Microbiol 2014;64:3877–3884 [CrossRef][PubMed]
    [Google Scholar]
  16. Eeckhaut V, Van Immerseel F, Pasmans F, De Brandt E, Haesebrouck F et al. Anaerostipes butyraticus sp. nov., an anaerobic, butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler chicken caecal content, and emended description of the genus Anaerostipes. Int J Syst Evol Microbiol 2010;60:1108–1112 [CrossRef][PubMed]
    [Google Scholar]
  17. Eeckhaut V, Van Immerseel F, Teirlynck E, Pasmans F, Fievez V et al. Butyricicoccus pullicaecorum gen. nov., sp. nov., an anaerobic, butyrate-producing bacterium isolated from the caecal content of a broiler chicken. Int J Syst Evol Microbiol 2008;58:2799–2802 [CrossRef][PubMed]
    [Google Scholar]
  18. Bader J, Albin A, Stahl U. Spore-forming bacteria and their utilisation as probiotics. Benef Microbes 2012;3:67–75 [CrossRef][PubMed]
    [Google Scholar]
  19. Neumeister B, Geiss HK, Braun R, Kimmig P, Dahouk SA et al. Mikrobiologische Diagnostik: Bakteriologie - Mykologie - Virologie - Parasitologie, 2nd ed. Stuttgart: Thieme; 2009
    [Google Scholar]
  20. Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA 2011;108:6252–6257 [CrossRef][PubMed]
    [Google Scholar]
  21. De Weirdt R, Possemiers S, Vermeulen G, Moerdijk-Poortvliet TC, Boschker HT et al. Human faecal microbiota display variable patterns of glycerol metabolism. FEMS Microbiol Ecol 2010;74:601–611 [CrossRef][PubMed]
    [Google Scholar]
  22. Huang Y, Ryll M, Walker C, Jung A, Runge M et al. Fatty acid composition of Yersinia ruckeri isolates from aquaculture ponds in northwestern Germany. Berl Munch Tierarztl Wochenschr 2014;127:123–128[PubMed]
    [Google Scholar]
  23. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  24. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  25. Decat E, Cosyn J, De Bruyn H, Miremadi R, Saerens B et al. Optimization of quantitative polymerase chain reactions for detection and quantification of eight periodontal bacterial pathogens. BMC Res Notes 2012;5:664 [CrossRef][PubMed]
    [Google Scholar]
  26. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  27. Coenye T, Falsen E, Vancanneyt M, Hoste B, Govan JR et al. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 1999;49:405–413 [CrossRef][PubMed]
    [Google Scholar]
  28. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  29. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004;5:113 [CrossRef][PubMed]
    [Google Scholar]
  30. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  33. Allen-Vercoe E, Daigneault M, White A, Panaccione R, Duncan SH et al. Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Anaerobe 2012;18:523–529 [CrossRef][PubMed]
    [Google Scholar]
  34. Sleat R, Mah RA. Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digestor. Int J Syst Bacteriol 1985;35:160–163 [CrossRef]
    [Google Scholar]
  35. Hardman JK, Stadtman TC. Metabolism of omega-acids. II. Fermentation of delta-aminovaleric acid by Clostridium aminovalericum n. sp. J Bacteriol 1960;79:549–552[PubMed]
    [Google Scholar]
  36. Jeong H, Yi H, Sekiguchi Y, Muramatsu M, Kamagata Y et al. Clostridium jejuense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2004;54:1465–1468 [CrossRef][PubMed]
    [Google Scholar]
  37. Ueki A, Ohtaki Y, Kaku N, Ueki K. Descriptions of Anaerotaenia torta gen. nov., sp. nov. and Anaerocolumna cellulosilytica gen. nov., sp. nov. isolated from a methanogenic reactor of cattle waste and reclassification of Clostridium aminovalericum, Clostridium jejuense and Clostridium xylanovorans as Anaerocolumna species. Int J Syst Evol Microbiol 2016;66:2936–2943 [CrossRef][PubMed]
    [Google Scholar]
  38. Warnick TA, Methé BA, Leschine SB. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 2002;52:1155–1160 [CrossRef][PubMed]
    [Google Scholar]
  39. Bui TP, de Vos WM, Plugge CM. Anaerostipes rhamnosivorans sp. nov., a human intestinal, butyrate-forming bacterium. Int J Syst Evol Microbiol 2014;64:787–793 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002338
Loading
/content/journal/ijsem/10.1099/ijsem.0.002338
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error