1887

Abstract

A non- Streptomyces actinomycete, designated as strain S265, was isolated from rhizosphere collected under an elephant ear plant (Colocasia esculenta) in Bangkok, Thailand. The taxonomic position of this strain was determined by a polyphasic approach. Strain S265 formed single globose spores on long, branching, aerial hyphae. It produced abundant aerial mycelium with green colour. The cell wall contained meso-diaminopimelic acid, and diagnostic whole-cell sugars were arabinose and galactose. Phosphatidylethanolamine and diphosphatidylglycerol were detected predominantly as polar lipids, whereas mycolic acids were not found. The major menaquinone was MK-9(H4), and principal cellular fatty acids were C15 : 1 B, iso-C16 : 1 H, anteiso-C15 : 0 and C15 : 0 2-OH. The DNA G+C content was 69 mol%. According to phylogenetic analysis, strain S265 was clustered with Saccharomonospora glauca K62 (98.1 %) and Saccharomonospora viridis DSM 43017 (97.1 %) despite its 16S rRNA gene sequence showing the highest similarity value to that of Saccharomonospora azurea NA-128 (98.6 %). DNA–DNA relatedness values between strain S265 and the closely related strains were in the range of 7–50 %, thus strengthening the evidence derived from the polyphasic study that strain S265 represents a novel species within the genus Saccharomonospora , for which the name Saccharomonospora colocasiae sp. nov. is proposed. The type strain is S265 (=TBRC 7235=NBRC 112945).

Keyword(s): rhizosphere and Saccharomonospora
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002336
2017-09-25
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4572.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002336&mimeType=html&fmt=ahah

References

  1. Nonomura H, Ohara Y. Distribution of actinomycetes in soil. X. New genus and species of monosporic actinomycetes in soil. J Ferment Technol 1971;49:895–903
    [Google Scholar]
  2. Lechevalier H, Lechevalier MP. Introduction to the order Actinomycetales. In Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer-Verlag AG; 1981; pp.1915–1922
    [Google Scholar]
  3. Kim SB. Genus XIII. Saccharomonospora Nonomura and Ohara 1971, 899AL. In Whitman W, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME et al. (editors) Bergey's Manual of Systematic Bacteriologyvol. 5 New York: Springer; 2012; pp.1390–1396
    [Google Scholar]
  4. Maloney KN, MacMillan JB, Kauffman CA, Jensen PR, DiPasquale AG et al. Lodopyridone, a structurally unprecedented alkaloid from a marine actinomycete. Org Lett 2009;11:5422–5424 [CrossRef][PubMed]
    [Google Scholar]
  5. Schuurmans DM, Olson BH, San Clemente CL. Production and isolation of thermoviridin, an antibiotic produced by Thermoactinomyces viridis n. sp. Appl Microbiol 1956;4:61–66[PubMed]
    [Google Scholar]
  6. Singh B, Parshad R, Khajuria RK, Guru SK, Pathania AS et al. Saccharonol B, a new cytotoxic methylated isocoumarin from Saccharomonospora azurea. Tetrahedron Lett 2013;54:6695–6699 [CrossRef]
    [Google Scholar]
  7. Veyisoglu A, Sazak A, Cetin D, Guven K, Sahin N. Saccharomonospora amisosensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 2013;63:3782–3786 [CrossRef][PubMed]
    [Google Scholar]
  8. Runmao H. Saccharomonospora azurea sp. nov., a new species from soil. Int J Syst Bacteriol 1987;37:60–61 [CrossRef]
    [Google Scholar]
  9. Runmao H, Lin C, Guizhen W. Saccharomonospora cyanea sp. nov. Int J Syst Bacteriol 1988;38:444–446 [CrossRef]
    [Google Scholar]
  10. Greiner-Mai E, Korn-Wendisch F, Kutzner HJ. Taxonomic revision of the genus Saccharomonospora and description of Saccharomonospora glauca sp. nov. Int J Syst Bacteriol 1988;38:398–405 [CrossRef]
    [Google Scholar]
  11. Al-Zarban SS, Al-Musallam AA, Abbas I, Stackebrandt E, Kroppenstedt RM. Saccharomonospora halophila sp. nov., a novel halophilic actinomycete isolated from marsh soil in Kuwait. Int J Syst Evol Microbiol 2002;52:555–558 [CrossRef][PubMed]
    [Google Scholar]
  12. Liu Z, Li Y, Zheng LQ, Huang YJ, Li WJ. Saccharomonospora marina sp. nov., isolated from an ocean sediment of the East China Sea. Int J Syst Evol Microbiol 2010;60:1854–1857 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhang DF, Chen W, He J, Zhang XM, Xiong ZJ et al. Saccharomonospora oceani sp. nov. isolated from marine sediments in Little Andaman, India. Antonie van Leeuwenhoek 2013;103:1377–1384 [CrossRef][PubMed]
    [Google Scholar]
  14. Li WJ, Tang SK, Stackebrandt E, Kroppenstedt RM, Schumann P et al. Saccharomonospora paurometabolica sp. nov., a moderately halophilic actinomycete isolated from soil in China. Int J Syst Evol Microbiol 2003;53:1591–1594 [CrossRef][PubMed]
    [Google Scholar]
  15. Syed DG, Tang SK, Cai M, Zhi XY, Agasar D et al. Saccharomonospora saliphila sp. nov., a halophilic actinomycete from an Indian soil. Int J Syst Evol Microbiol 2008;58:570–573 [CrossRef][PubMed]
    [Google Scholar]
  16. Jin X, Xu LH, Mao PH, Hseu TH, Jiang CL. Description of Saccharomonospora xinjiangensis sp. nov. based on chemical and molecular classification. Int J Syst Bacteriol 1998;48:1095–1099 [CrossRef][PubMed]
    [Google Scholar]
  17. Li D, Chen ZJ, Luo XX, Xia ZF, Wan CX et al. Saccharomonospora xiaoerkulensis sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2016;66:5145–5149 [CrossRef][PubMed]
    [Google Scholar]
  18. Intra B, Matsumoto A, Inahashi Y, Omura S, Takahashi Y et al. Actinokineospora bangkokensis sp. nov., isolated from rhizospheric soil. Int J Syst Evol Microbiol 2013;63:2655–2660 [CrossRef][PubMed]
    [Google Scholar]
  19. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987;65:501–509 [CrossRef]
    [Google Scholar]
  20. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  21. Také A, Matsumoto A, Ōmura S, Takahashi Y. Streptomyces lactacystinicus sp. nov. and Streptomyces cyslabdanicus sp. nov., producing lactacystin and cyslabdan, respectively. J Antibiot 2015;68:322–327 [CrossRef][PubMed]
    [Google Scholar]
  22. Tajima K, Takahashi Y, Seino A, Iwai Y, Ōmura S. Description of two novel species of the genus Kitasatospora Ōmura, et al. 1982, Kitasatospora cineracea sp. nov. and Kitasatospora niigatensis sp. nov. Int J Syst Evol Microbiol2001:1765–1771
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  28. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526[PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  31. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  32. Uchida K, Aida . Acyl type of bacterial cell wall: its simple identification by a colorimetric method. J Gen Appl Microbiol 1977;23:249–260 [CrossRef]
    [Google Scholar]
  33. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982;151:828–837[PubMed]
    [Google Scholar]
  34. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  35. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  36. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  37. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963;72:619–629 [CrossRef][PubMed]
    [Google Scholar]
  38. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  39. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  40. Waksman SA. The Actinomycetes, vol. 2, Classification, Identification and Description of Genera and Species MD: Williams & Wilkins; 1961
    [Google Scholar]
  41. Jacobson E, Grauville WC, Fogs CE. Color Harmony Manual, 4th ed. IL: Container Corporation of America; 1958
    [Google Scholar]
  42. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  43. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002336
Loading
/content/journal/ijsem/10.1099/ijsem.0.002336
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error