1887

Abstract

A novel aerobic, Gram-stain-negative, rod-shaped, motile bacterium, strain PTW21, was isolated from wet soil. 16S rRNA gene sequence phylogenetic analysis of strain PTW21 revealed an affiliation to the genus and it shared 98.5 and 98.1 % similarity with 5516 S-1 and TS3, respectively. Growth occurred at 10–45 °C, pH 4.5–12.5 and NaCl concentrations up to 2 % (w/v). The major fatty acids were summed feature 3 (Cω and/or iso-C 2-OH) and C. The predominant respiratory quinone was Q-8. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of strain PTW21 was 64.6 mol%. The results of DNA–DNA hybridization revealed that strain PTW21 showed 37.4 % relatedness with 5516 S-1 and 40.0 % with TS3. Based on phenotypic, chemotaxonomic and phylogenetic differences, strain PTW21 (=CICC 24113=BCRC 81061) is proposed as the type strain of novel species of the genus with the names sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002333
2017-12-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/4943.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002333&mimeType=html&fmt=ahah

References

  1. La Scola B, Birtles RJ, Mallet MN, Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 1998;36:2847–2852[PubMed]
    [Google Scholar]
  2. Kämpfer P, Lodders N, Martin K, Falsen E. Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int J Syst Evol Microbiol 2011;61:1528–1533 [CrossRef][PubMed]
    [Google Scholar]
  3. Rodríguez-Díaz M, Cerrone F, Sánchez-Peinado M, Santacruz-Calvo L, Pozo C et al. Massilia umbonata sp. nov., able to accumulate poly-β-hydroxybutyrate, isolated from a sewage sludge compost-soil microcosm. Int J Syst Evol Microbiol 2014;64:131–137 [CrossRef][PubMed]
    [Google Scholar]
  4. Kim J. Massilia kyonggiensis sp. nov., isolated from forest soil in Korea. Int J Syst Evol Microbiol 2014;66:3669–3674 [CrossRef][PubMed]
    [Google Scholar]
  5. Singh H, du J, Won K, Yang JE, Yin C et al. Massilia arvi sp. nov., isolated from fallow-land soil previously cultivated with Brassica oleracea, and emended description of the genus Massilia. Int J Syst Evol Microbiol 2015;65:3690–3696 [CrossRef][PubMed]
    [Google Scholar]
  6. Shen L, Liu Y, Gu Z, Xu B, Wang N et al. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int J Syst Evol Microbiol 2015;65:2124–2129 [CrossRef][PubMed]
    [Google Scholar]
  7. Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse HJ et al. Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2015;65:56–64 [CrossRef][PubMed]
    [Google Scholar]
  8. Feng GD, Yang SZ, Li HP, Zhu HH. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing. Int J Syst Evol Microbiol 2016;66:50–55 [CrossRef][PubMed]
    [Google Scholar]
  9. Embarcadero-Jiménez S, Peix Á, Igual JM, Rivera-Orduña FN, Tao Wang E et al. Massilia violacea sp. nov., isolated from riverbank soil. Int J Syst Evol Microbiol 2016;66:707–711 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhao X, Li D, Xu S, Guo Z, Zhang Y et al. Clostridium guangxiense sp. nov. and Clostridium neuense sp. nov., two phylogenetically closely related hydrogen-producing species isolated from lake sediment. Int J Syst Evol Microbiol 2017;67:710–715 [CrossRef][PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  12. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  14. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  16. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  17. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  18. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  19. Du Y, Yu X, Wang G. Massilia tieshanensis sp. nov., isolated from mining soil. Int J Syst Evol Microbiol 2012;62:2356–2362 [CrossRef][PubMed]
    [Google Scholar]
  20. Hucker GJ, Conn HJ. Method of gram staining. N Y State Agric Exp Stn Tech Bull 1923;93:3–37
    [Google Scholar]
  21. Breznak JA, Costilow RN. Physicochemical factors in growth. Methods for General and Molecular Bacteriology 1994; pp.137–154
    [Google Scholar]
  22. Weon HY, Kim BY, Hong SB, Jeon YA, Koo BS et al. Massilia niabensis sp. nov. and Massilia niastensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2009;59:1656–1660 [CrossRef][PubMed]
    [Google Scholar]
  23. Hiraishi A, Ueda Y, Ishihara J. Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl Environ Microbiol 1998;64:992–998[PubMed]
    [Google Scholar]
  24. Romano I, Lama L, Nicolaus B, Poli A, Gambacorta A et al. Halomonas alkaliphila sp. nov., a novel halotolerant alkaliphilic bacterium isolated from a salt pool in Campania (Italy). J Gen Appl Microbiol 2006;52:339–348 [CrossRef][PubMed]
    [Google Scholar]
  25. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  26. Xu XW, Huo YY, Wang CS, Oren A, Cui HL et al. Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 2011;61:1817–1822 [CrossRef][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical note 101. Newark, DE: MIDI, Inc; 1990
    [Google Scholar]
  28. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  29. Weon HY, Kim BY, Son JA, Jang HB, Hong SK et al. Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008;58:1422–1425 [CrossRef][PubMed]
    [Google Scholar]
  30. Shen L, Liu Y, Wang N, Yao T, Jiao N et al. Massilia yuzhufengensis sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2013;63:1285–1290 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002333
Loading
/content/journal/ijsem/10.1099/ijsem.0.002333
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error