1887

Abstract

A novel actinomycete strain, designated KIS14-16, was isolated from forest soil in Ongjin county, South Korea and characterized using polyphasic taxonomy. The cells are aerobic, Gram-stain-positive, non-flagellated and short rods. The strain grew in a temperature range of 4–33 °C (optimum, 28–30 °C) and pH range of 5.0–10.0 (optimum, 7.0) and in the presence of 0–5 % (w/v) NaCl (optimum, 0 %). Comparison of 16S rRNA gene sequences showed that strain KIS14-16 is a member of the genus Arthrobacter exhibiting high sequence similarity with A. livingstonensis LI2 (97.7 %), A. cryoconiti Cr6-08 (97.6 %), A. psychrochitiniphilus GP3 (97.4 %), A. stackebrandtii CCM 2783 (97.1 %) and A. globiformis DSM 20124 (96.3 %). DNA–DNA relatedness and phenotypic data distinguished strain KIS14-16 from phylogenetically related type strains. The peptidoglycan type of strain KIS14-16 was A3α, with an interpeptide bridge comprising l-Lys, l-Thr, Gly and l-Ala4. Strain KIS14-16 contained a large amount of MK-9(H2) and relatively small amounts of MK-10(H2) and MK-8(H2). The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and dimannosylglyceride. The major fatty acids (>10 %) were anteiso-C15 : 0 and anteiso-C17 : 0. The genomic DNA G+C content was 63.9 mol%. On the basis of these phenotypic, chemotaxonomic and phylogenetic data, strain KIS14-16 should be designated as a representative novel species of the genus Arthrobacter , for which the name Arthrobacter silviterrae sp. nov. is proposed. The type strain is KIS14-16 (=KACC 17303=DSM 27180=NBRC 109660).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002329
2017-10-06
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4546.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002329&mimeType=html&fmt=ahah

References

  1. Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 1947; 54: 291– 303 [PubMed]
    [Google Scholar]
  2. Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 2016; 66: 9– 37 [CrossRef] [PubMed]
    [Google Scholar]
  3. Chen YG, Tang SK, Zhang YQ, Li ZY, Yi LB et al. Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie van Leeuwenhoek 2009; 96: 63– 70 [CrossRef] [PubMed]
    [Google Scholar]
  4. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  5. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  6. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823– 1829 [CrossRef] [PubMed]
    [Google Scholar]
  7. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  8. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  9. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  10. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  12. Breznak JA, Costilow RN. Physicochemical factors in growth. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 137– 154
    [Google Scholar]
  13. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  14. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acid, Technical Note no. 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  15. Hamada M, Tamura T, Yamamura H, Suzuki K, Hayakawa M et al. Lysinimicrobium mangrovi gen. nov., sp. nov., an actinobacterium isolated from the rhizosphere of a mangrove. Int J Syst Evol Microbiol 2012; 62: 1731– 1735 [CrossRef] [PubMed]
    [Google Scholar]
  16. Margesin R, Schumann P, Zhang DC, Redzic M, Zhou YG et al. Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2012; 62: 397– 402 [CrossRef] [PubMed]
    [Google Scholar]
  17. Seldin L, Dubnau D. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 1985; 35: 151– 154 [CrossRef]
    [Google Scholar]
  18. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [PubMed] [Crossref]
    [Google Scholar]
  19. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  20. Ganzert L, Bajerski F, Mangelsdorf K, Lipski A, Wagner D et al. Arthrobacter livingstonensis sp. nov. and Arthrobacter cryotolerans sp. nov., salt-tolerant and psychrotolerant species from Antarctic soil. Int J Syst Evol Microbiol 2011; 61: 979– 984 [CrossRef] [PubMed]
    [Google Scholar]
  21. Wang F, Gai Y, Chen M, Xiao X. Arthrobacter psychrochitiniphilus sp. nov., a psychrotrophic bacterium isolated from Antarctica. Int J Syst Evol Microbiol 2009; 59: 2759– 2762 [CrossRef] [PubMed]
    [Google Scholar]
  22. Tvrzová L, Schumann P, Spröer C, Sedlácek I, Verbarg S et al. Polyphasic taxonomic study of strain CCM 2783 resulting in the description of Arthrobacter stackebrandtii sp. nov. Int J Syst Evol Microbiol 2005; 55: 805– 808 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002329
Loading
/content/journal/ijsem/10.1099/ijsem.0.002329
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error