1887

Abstract

A Gram-positive bacterium originating from the surface-sterilized leaf of var. (Franch.) was characterized by using a polyphasic approach. The isolate formed yellow, smooth, circular colonies on nutrient agar with 0.2 % starch (NSA). Cells were non-motile, non-sporulating, irregular rods or cocci. Strain CPCC 203535 had the highest 16S rRNA gene sequence similarity to the type strain of (96.9 %) and formed the deepest branch in the genus in the neighbour-joining (NJ) phylogenetic tree based on 16S rRNA gene sequences. The major menaquinones of strain CPCC 203535 were MK-8(H), MK-8(H) and MK-8. The peptidoglycan contained ornithine as the diagnostic diamino acid. The polar lipid profile consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylinositol (PI) and unknown lipid (UL). The major fatty acids iso-C, iso-C, iso-C and anteiso-C were consistent with the fatty acid patterns reported for members of the genus . The DNA G+C composition is 71.4 mol%. The results of physiological and biochemical tests allowed phenotypic differentiation of strain CPCC 203535 from its closest phylogenetic species in the genus . Strain CPCC 203535 represents a novel species of the genus for which the name sp. nov. is proposed, with CPCC 203535 (=NBRC 109452 =KCTC 29164) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002328
2017-11-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4541.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002328&mimeType=html&fmt=ahah

References

  1. Groth I, Schumann P, Weiss N, Schuetze B, Augsten K et al. Ornithinimicrobium humiphilum gen. nov., sp. nov., a novel soil actinomycete with L-ornithine in the peptidoglycan. Int J Syst Evol Microbiol 2001;51:81–87 [CrossRef][PubMed]
    [Google Scholar]
  2. Mayilraj S, Saha P, Suresh K, Saini HS. Ornithinimicrobium kibberense sp. nov., isolated from the Indian Himalayas. Int J Syst Evol Microbiol 2006;56:1657–1661 [CrossRef][PubMed]
    [Google Scholar]
  3. Liu XY, Wang BJ, Jiang CY, Liu SJ. Ornithinimicrobium pekingense sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2008;58:116–119 [CrossRef][PubMed]
    [Google Scholar]
  4. Kämpfer P, Glaeser SP, Schäfer J, Lodders N, Martin K et al. Ornithinimicrobium murale sp. nov., isolated from an indoor wall colonized by moulds. Int J Syst Evol Microbiol 2013;63:119–123 [CrossRef][PubMed]
    [Google Scholar]
  5. Liu LZ, Liu Y, Chen Z, Liu HC, Zhou YG et al. Ornithinimicrobium tianjinense sp. nov., isolated from a recirculating aquaculture system. Int J Syst Evol Microbiol 2013;63:4489–4494 [CrossRef][PubMed]
    [Google Scholar]
  6. Ramaprasad EV, Sasikala C, Ramana C. Ornithinimicrobium algicola sp. nov., a marine actinobacterium isolated from the green alga of the genus Ulva. Int J Syst Evol Microbiol 2015;65:4627–4631 [CrossRef][PubMed]
    [Google Scholar]
  7. Groth I, Schumann P, Weiss N, Schuetze B, Augsten K et al. Genus IX Ornithinimicrobium. In: Bergey’s Manual of Systematic Bacteriology New York: Springer; 2012; pp.777–780
    [Google Scholar]
  8. Yang Y, Jin H, Zhang J, Zhang J, Wang Y. Quantitative evaluation and discrimination of wild Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz from three regions of Yunnan Province using UHPLC-UV-MS and UV spectroscopy couple with partial least squares discriminant analysis. J Nat Med 2017;71:148–157 [CrossRef][PubMed]
    [Google Scholar]
  9. Fang XM, Su J, Wang H, Zhang T, Zhao LL et al. Paenibacillus eucommiae sp. nov., isolated from a traditional Chinese medicinal herbal plant, Eucommia ulmoides Oliver. Int J Syst Evol Microbiol 2017;67:993–997 [CrossRef][PubMed]
    [Google Scholar]
  10. Isik K, Chun J, Hah YC, Goodfellow M. Nocardia salmonicida nom. rev., a fish pathogen. Int J Syst Bacteriol 1999;49:833–837 [CrossRef][PubMed]
    [Google Scholar]
  11. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  12. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983;129:1743–1813 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhang YQ, Yu LY, Wang D, Liu HY, Sun CH et al. Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. Int J Syst Evol Microbiol 2008;58:2070–2074 [CrossRef][PubMed]
    [Google Scholar]
  14. Yuan LJ, Zhang YQ, Guan Y, Wei YZ, Li QP et al. Saccharopolyspora antimicrobica sp. nov., an actinomycete from soil. Int J Syst Evol Microbiol 2008;58:1180–1185 [CrossRef][PubMed]
    [Google Scholar]
  15. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Bacteriol 2007;57:1424–1428[Crossref]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  19. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  21. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  22. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  23. Embley TM, Goodfellow M, Minnikin DE, O'Donnell AG. Lipid and wall amino acid composition in the classification of Rothia dentocariosa. Zentralbl Bakteriol Mikrobiol Hyg A 1984;257:285–295[PubMed]
    [Google Scholar]
  24. Collins MD, Goodfellow M, Minnikin DE. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 1980;118:29–37 [CrossRef][PubMed]
    [Google Scholar]
  25. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997;47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  26. Kellogg JA, Bankert DA, Withers GS, Sweimler W, Kiehn TE et al. Application of the sherlock mycobacteria identification system using high-performance liquid chromatography in a clinical laboratory. J Clin Microbiol 2001;39:964–970 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002328
Loading
/content/journal/ijsem/10.1099/ijsem.0.002328
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error