1887

Abstract

Three bacterial strains were isolated from liver and spleen of diseased farmed redbanded seabream () in south-west Spain. Their partial 16S rRNA gene sequences clustered within those of the genus , showing high similarity (98.6–99.3 %) to the type strains of , , , and . Multilocus sequence analysis using six housekeeping genes (, , , , and 16S rRNA) confirmed the new strains as forming an independent branch with a bootstrap value of 100, likely to represent a novel species. To confirm this, we used whole genome sequencing and genomic analysis (ANIb, ANIm and DNA–DNA hybridization) obtaining values well below the thresholds for species delineation. In addition, a phenotypic characterization was performed to support the description and differentiation of the novel strains from related taxa. Cells were Gram-stain-negative, motile bacilli, chemo-organotrophic and facultatively anaerobic. They fermented glucose, as well as galactose and -mannose, without production of gas. Oxidase and catalase were positive. The predominant cellular fatty acids were Cω7/Cω6 and C. The predominant respiratory quinone (Q-8) and major polar lipids (phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol) were inferred from annotated genes in the genome of strain H01100410B, which had a G+C content of 38.6 mol%. The results obtained demonstrate that the three strains represent a novel species, for which the name sp. nov. is proposed. The type strain is H01100410B (=CECT 9189=LMG 29991).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002325
2017-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4518.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002325&mimeType=html&fmt=ahah

References

  1. Figge MJ, Cleenwerck I, van Uijen A, De Vos P, Huys G et al. Photobacterium piscicola sp. nov., isolated from marine fish and spoiled packed cod. Syst Appl Microbiol 2014; 37:329–335 [View Article][PubMed]
    [Google Scholar]
  2. Ast JC, Dunlap PV. Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi. Arch Microbiol 2004; 181:352–361 [View Article][PubMed]
    [Google Scholar]
  3. Ast JC, Dunlap PV. Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ Microbiol 2005; 7:1641–1654 [View Article][PubMed]
    [Google Scholar]
  4. Dunlap PV, Ast JC. Genomic and phylogenetic characterization of luminous bacteria symbiotic with the deep-sea fish Chlorophthalmus albatrossis (Aulopiformes: Chlorophthalmidae). Appl Environ Microbiol 2005; 71:930–939 [View Article][PubMed]
    [Google Scholar]
  5. Goodell KH, Jordan MR, Graham R, Cassidy C, Nasraway SA. Rapidly advancing necrotizing fasciitis caused by Photobacterium (Vibrio) damsela: a hyperaggressive variant. Crit Care Med 2004; 32:278–281 [View Article][PubMed]
    [Google Scholar]
  6. Yamane K, Asato J, Kawade N, Takahashi H, Kimura B et al. Two cases of fatal necrotizing fasciitis caused by Photobacterium damsela in Japan. J Clin Microbiol 2004; 42:1370–1372 [View Article][PubMed]
    [Google Scholar]
  7. Alvarez JR, Lamba S, Dyer KY, Apuzzio JJ. An unusual case of urinary tract infection in a pregnant woman with Photobacterium damsela. Infect Dis Obstet Gynecol 2006; 2006:1–3 [View Article]
    [Google Scholar]
  8. Aigbivbalu L, Maraqa N. Photobacterium damsela wound infection in a 14-year-old surfer. South Med J 2009; 102:425–426 [View Article][PubMed]
    [Google Scholar]
  9. Kanki M, Yoda T, Ishibashi M, Tsukamoto T. Photobacterium phosphoreum caused a histamine fish poisoning incident. Int J Food Microbiol 2004; 92:79–87 [View Article][PubMed]
    [Google Scholar]
  10. Emborg J, Laursen BG, Dalgaard P. Significant histamine formation in tuna (Thunnus albacares) at 2 °C–effect of vacuum- and modified atmosphere-packaging on psychrotolerant bacteria. Int J Food Microbiol 2005; 101:263–279 [View Article][PubMed]
    [Google Scholar]
  11. Chiu TH, Kao LY, Chen ML. Antibiotic resistance and molecular typing of Photobacterium damselae subsp. damselae, isolated from seafood. J Appl Microbiol 2013; 114:1184–1192 [View Article][PubMed]
    [Google Scholar]
  12. Pedersen K, Skall HF, Lassen-Nielsen AM, Bjerrum L, Olesen NJ. Photobacterium damselae subsp. damselae, an emerging pathogen in Danish rainbow trout, Oncorhynchus mykiss (Walbaum), mariculture. J Fish Dis 2009; 32:465–472 [View Article][PubMed]
    [Google Scholar]
  13. Labella A, Manchado M, Alonso MC, Castro D, Romalde JL et al. Molecular intraspecific characterization of Photobacterium damselae ssp. damselae strains affecting cultured marine fish. J Appl Microbiol 2010; 108:2122–2132 [View Article][PubMed]
    [Google Scholar]
  14. Labella A, Berbel C, Manchado M, Castro D, Borrego JJ et al. Photobacterium damselae, an emerging pathogen affecting new cultured marine fish species in Southern Spain. In Aral F, Doggu Z. (editors) Recent Advances in Fish Farms New York, USA: InTech; 2011 pp. 135–152
    [Google Scholar]
  15. Zhang X-J, Qin G-M, Bing X-W, Yan B-L, Bi K-R. Phenotypic and molecular characterization of Photobacterium damselae, a pathogen of the cultured tongue sole Cynoglossus semilaevis in China. N Zeal J Mar Freshwat Res 2011; 45:1–13 [View Article]
    [Google Scholar]
  16. Rivas AJ, Lemos ML, Osorio CR. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front Microbiol 2013; 4:283 [View Article][PubMed]
    [Google Scholar]
  17. Lozano-Leon A, Osorio CR, Nuñez S, Martínez-Urtaza J, Magariños B. Occurrence of Photobacterium damselae subsp. damselae in bivalve mollusks from Northwest Spain. Bull Eur Assoc Fish Pathol 2003; 23:40–44
    [Google Scholar]
  18. Seo HJ, Bae SS, Lee JH, Kim SJ. Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int J Syst Evol Microbiol 2005; 55:1661–1666 [View Article][PubMed]
    [Google Scholar]
  19. Gomez-Gil B, Roque A, Rotllant G, Peinado L, Romalde JL et al. Photobacterium swingsii sp. nov., isolated from marine organisms. Int J Syst Evol Microbiol 2011; 61:315–319 [View Article][PubMed]
    [Google Scholar]
  20. Gomez-Gil B, Roque A, Rotllant G, Romalde JL, Doce A et al. Photobacterium sanguinicancri sp. nov. isolated from marine animals. Antonie van Leeuwenhoek 2016; 109:817–825 [View Article][PubMed]
    [Google Scholar]
  21. Machado H, Giubergia S, Mateiu RV, Gram L. Photobacterium galatheae sp. nov., a bioactive bacterium isolated from a mussel in the Solomon Sea. Int J Syst Evol Microbiol 2015; 65:4503–4507 [View Article][PubMed]
    [Google Scholar]
  22. Thompson FL, Thompson CC, Naser S, Hoste B, Vandemeulebroecke K et al. Photobacterium rosenbergii sp. nov. and Enterovibrio coralii sp. nov., vibrios associated with coral bleaching. Int J Syst Evol Microbiol 2005; 55:913–917 [View Article][PubMed]
    [Google Scholar]
  23. Chimetto LA, Brocchi M, Gondo M, Thompson CC, Gomez-Gil B et al. Genomic diversity of vibrios associated with the Brazilian coral Mussismilia hispida and its sympatric zoanthids (Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi). J Appl Microbiol 2009; 106:1818–1826 [View Article][PubMed]
    [Google Scholar]
  24. Chimetto LA, Cleenwerck I, Thompson CC, Brocchi M, Willems A et al. Photobacterium jeanii sp. nov., isolated from corals and zoanthids. Int J Syst Evol Microbiol 2010; 60:2843–2848 [View Article][PubMed]
    [Google Scholar]
  25. Moreira AP, Duytschaever G, Chimetto Tonon LA, Fróes AM, de Oliveira LS et al. Photobacterium sanctipauli sp. nov. isolated from bleached Madracis decactis (Scleractinia) in the St Peter & St Paul Archipelago, Mid-Atlantic Ridge, Brazil. PeerJ 2014; 2:e427 [View Article][PubMed]
    [Google Scholar]
  26. Munoz R, Yarza P, Ludwig W, Euzéby J, Amann R et al. Release LTPs104 of the All-Species Living Tree. Syst Appl Microbiol 2011; 34:169–170 [View Article][PubMed]
    [Google Scholar]
  27. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  28. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  29. Sawabe T, Kita-Tsukamoto K, Thompson FL. Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 2007; 189:7932–7936 [View Article][PubMed]
    [Google Scholar]
  30. Labella A, Vida M, Alonso MC, Infante C, Cardenas S et al. First isolation of Photobacterium damselae ssp. damselae from cultured redbanded seabream, Pagrus auriga Valenciennes, in Spain. J Fish Dis 2006; 29:175–179 [View Article][PubMed]
    [Google Scholar]
  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  32. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526[PubMed]
    [Google Scholar]
  33. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
  34. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York, NY: Oxford University Press; 2000
    [Google Scholar]
  35. Urbanczyk H, Ast JC, Dunlap PV. Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiol Rev 2011; 35:324–342 [View Article][PubMed]
    [Google Scholar]
  36. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994; 5:25–40
    [Google Scholar]
  37. Arahal DR, Pujalte MJ, Rodrigo-Torres L. Draft genomic sequence of Nereida ignava CECT 5292T, a marine bacterium of the family Rhodobacteraceae. Stand Genomic Sci 2016; 11:21 [View Article][PubMed]
    [Google Scholar]
  38. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Deng M, Jiang R, Sun F, Zhang X. (editors) Lecture Notes in Computer Science Berlin: Springer-Verlag; 2013 pp. 158–170
    [Google Scholar]
  39. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  42. Macián MC, Ludwig W, Aznar R, Grimont PA, Schleifer KH et al. Vibrio lentus sp. nov., isolated from Mediterranean oysters. Int J Syst Evol Microbiol 2001; 51:1449–1456 [View Article][PubMed]
    [Google Scholar]
  43. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  44. MIDI Sherlock Microbial Identification System Operating Manual, version 6.1 Newark, DE: MIDI Inc; 2008
    [Google Scholar]
  45. Patel N, Sankaranarayanan K, Busse H-J, Lawson P. Investigating genomic tools for polar lipid prediction. Bergey’s International Society for Microbial Systematics Pune, India: 2016
    [Google Scholar]
  46. Liu Y, Liu LZ, Song L, Zhou YG, Qi FJ et al. Photobacterium aquae sp. nov., isolated from a recirculating mariculture system. Int J Syst Evol Microbiol 2014; 64:475–480 [View Article][PubMed]
    [Google Scholar]
  47. Deep K, Poddar A, Das SK. Photobacterium panuliri sp. nov., an alkalitolerant marine bacterium isolated from eggs of spiny lobster, Panulirus penicillatus from Andaman Sea. Curr Microbiol 2014; 69:660–668 [View Article][PubMed]
    [Google Scholar]
  48. Ast JC, Cleenwerck I, Engelbeen K, Urbanczyk H, Thompson FL et al. Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes. Int J Syst Evol Microbiol 2007; 57:2073–2078 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002325
Loading
/content/journal/ijsem/10.1099/ijsem.0.002325
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error